如圖,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.點P從B出發(fā)沿BA向A運動,速度為每秒1cm,點E是點B以P為對稱中心的對稱點,點P運動的同時,點Q從A出發(fā)沿AC向C運動,速度為每秒2cm,當(dāng)點Q到達頂點C時,P,Q同時停止運動,設(shè)P,Q兩點運動時間為t秒.
(1)當(dāng)t為何值時,PQ∥BC?
(2)設(shè)四邊形PQCB的面積為y,求y關(guān)于t的函數(shù)關(guān)系式;
(3)當(dāng)t為何值時,△AEQ為等腰三角形?
【考點】四邊形綜合題.
【答案】(1);
(2);
(3)當(dāng)時,△AEQ是等腰三角形.
30
13
s
(2)
y
=
4
5
t
2
-
8
t
+
24
(
0
≤
t
≤
3
)
(3)當(dāng)
t
=
5
2
s
,
t
=
30
11
s
,
t
=
25
11
s
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/27 13:0:9組卷:40引用:4難度:0.3
相似題
-
1.如圖,△ABC中,∠CAB與∠CBA均為銳角,分別以CA、CB為邊向△ABC外側(cè)作正方形CADE和正方形CBFG,再作DD1⊥直線AB于D1,F(xiàn)F1⊥直線AB于F1.
(1)如圖(1),過點C作CH⊥AB于H,求證:DD1+FF1=AB;
(2)如圖(2),連接EG,問△ABC的面積與△ECG的面積是否相等?請說明理由;
(3)如圖(3),過點C作CM⊥EG于M,延長MC交AB于點N,求證:AN=BN.發(fā)布:2025/6/21 3:30:1組卷:127引用:3難度:0.5 -
2.如圖直角坐標(biāo)系中直線AB與x軸正半軸、y軸正半軸交于A,B兩點,已知B(0,4),∠BAO=30°,P,Q分別是線段OB,AB上的兩個動點,P從O出發(fā)以每秒3個單位長度的速度向終點B運動,Q從B出發(fā)以每秒8個單位長度的速度向終點A運動,兩點同時出發(fā),當(dāng)其中一點到達終點時整個運動結(jié)束,設(shè)運動時間為t(秒).
(1)求線段AB的長,及點A的坐標(biāo);
(2)t為何值時,△BPQ的面積為2;3
(3)若C為OA的中點,連接QC,QP,以QC,QP為鄰邊作平行四邊形PQCD,
①t為何值時,點D恰好落在坐標(biāo)軸上;
②是否存在時間t使x軸恰好將平行四邊形PQCD的面積分成1:3的兩部分,若存在,直接寫出t的值.發(fā)布:2025/6/20 23:0:1組卷:1027引用:6難度:0.3 -
3.如圖,在梯形ABCD中,AD∥BC,∠B=90°,AB=10cm,AD=20cm,BC=24cm,動點P從點A出發(fā)沿AD方向向點D以1cm/s的速度運動,動點Q從點C開始沿CB方向向點B以3cm/s的速度運動.P、Q兩點同時出發(fā),設(shè)運動時間為t,當(dāng)其中一點到達端點時,另一點隨之停止運動.
(1)當(dāng)t=3時,PD=,CQ=.
(2)當(dāng)t為何值時,四邊形CDPQ是平行四邊形?請說明理由.
(3)在運動過程中,設(shè)四邊形CDPQ的面積為S,寫出S與t的函數(shù)關(guān)系式,并求當(dāng)t為何值時,S的值最大,最大值是多少?發(fā)布:2025/6/21 2:0:1組卷:147引用:2難度:0.3