某大學開設甲、乙、丙三門選修課,學生是否選修哪門課互不影響.已知學生小張只選甲的概率為0.08,只選修甲和乙的概率是0.12,至少選修一門的概率是0.88,用ξ表示小張選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積.
(Ⅰ)求學生小張選修甲的概率;
(Ⅱ)記“函數(shù)f(x)=x2+ξx為R上的偶函數(shù)”為事件A,求事件A的概率;
(Ⅲ)求ξ的分布列和數(shù)學期望.
【答案】(Ⅰ)0.4
(Ⅱ)0.24
(Ⅲ)分布列為
ξ的數(shù)學期望為1.52
(Ⅱ)0.24
(Ⅲ)分布列為
ξ | 0 | 2 |
P | 0.24 | 0.76 |
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:388引用:7難度:0.3
相似題
-
1.甲、乙兩人進行圍棋比賽,共比賽2n(n∈N*)局,且每局甲獲勝的概率和乙獲勝的概率均為
.如果某人獲勝的局數(shù)多于另一人,則此人贏得比賽.記甲贏得比賽的概率為P(n),則( )12A. P(2)=18B. P(3)=1132C. P(n)=12(1-Cn2n22n)D.P(n)的最大值為 14發(fā)布:2024/12/29 12:0:2組卷:255引用:6難度:0.6 -
2.小王同學進行投籃練習,若他第1球投進,則第2球投進的概率為
;若他第1球投不進,則第2球投進的概率為23.若他第1球投進概率為13,他第2球投進的概率為( ?。?/h2>23A. 59B. 23C. 79D. 83發(fā)布:2024/12/29 12:0:2組卷:305引用:5難度:0.7 -
3.某市在市民中發(fā)起了無償獻血活動,假設每個獻血者到達采血站是隨機的,并且每個獻血者到達采血站和其他的獻血者到達采血站是相互獨立的.在所有人中,通常45%的人的血型是O型,如果一天內(nèi)有10位獻血者到達采血站獻血,用隨機模擬的方法來估計一下,這10位獻血者中至少有4位的血型是O型的概率.
發(fā)布:2024/12/29 11:0:2組卷:1引用:1難度:0.7
相關(guān)試卷