如圖所示,在平行六面體ABCD-A1B1C1D1中,E,F(xiàn)分別在BB1和DD1上,且BE=13BB1,DF=23DD1.
(1)證明:A、E、C1、F四點(diǎn)共面.
(2)若EF=xAB+yAD+zAA1,求x+y+z.
1
3
2
3
EF
AB
AD
A
A
1
【考點(diǎn)】空間向量基本定理、正交分解及坐標(biāo)表示;平面的基本性質(zhì)及推論.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:879引用:11難度:0.9
相似題
-
1.對于非零空間向量
,a,b,現(xiàn)給出下列命題,其中為真命題的是( ?。?/h2>c發(fā)布:2024/12/29 11:0:2組卷:426引用:6難度:0.7 -
2.
是空間的一組基底,則可以與向量{a,b,c}構(gòu)成基底的向量( ?。?/h2>p=a+b,q=a+2b發(fā)布:2024/12/16 11:30:2組卷:147引用:2難度:0.7 -
3.已知空間四邊形ABCO中,
,OA=a,OB=b,點(diǎn)N在BC上,且CN=2NB,M為OA中點(diǎn),則OC=c等于( ?。?/h2>MN發(fā)布:2024/12/29 3:30:1組卷:91引用:4難度:0.7