數(shù)學(xué)學(xué)習(xí)總是循序漸進(jìn)、不斷延伸拓展的,數(shù)學(xué)知識(shí)往往起源于人們?yōu)榱私鉀Q某些問題,通過觀察、測量、思考、猜想出的一些結(jié)論.但是所猜想的結(jié)論不一定都是正確的.人們從已有的知識(shí)出發(fā),經(jīng)過推理、論證后,如果所猜想的結(jié)論在邏輯上沒有矛盾,就可以作為新的推理的前提,數(shù)學(xué)中稱之為定理.

(1)推理證明:
在八年級(jí)學(xué)習(xí)等腰三角形和直角三角形時(shí),借助工具測量就能夠發(fā)現(xiàn):“直角三角形斜邊上的中線等于斜邊的一半”,當(dāng)時(shí)并未說明這個(gè)結(jié)論的正確性.九年級(jí)學(xué)習(xí)了矩形的判定和性質(zhì)之后,就可以解決這個(gè)問題了.如圖1,在Rt△ABC中,若CD是斜邊AB上的中線,則CD=12AB,請(qǐng)你用矩形的性質(zhì)證明這個(gè)結(jié)論的正確性.
(2)遷移運(yùn)用:利用上述結(jié)論解決下列問題:
①如圖2,在線段BD異側(cè)以BD為斜邊分別構(gòu)造兩個(gè)直角三角形△ABD與△CBD,E、F分別是BD、AC的中點(diǎn),判斷EF與AC的位置關(guān)系并說明理由;
②如圖3,?ABCD對(duì)角線AC、BD相交于點(diǎn)O,分別以AC、BD為斜邊且在同側(cè)分別構(gòu)造兩個(gè)直角三角形△ACE與△BDE,求證:?ABCD是矩形.
CD
=
1
2
AB
【考點(diǎn)】四邊形綜合題.
【答案】(1)見解析;
(2)①EF垂直平分AC;
②見解析.
(2)①EF垂直平分AC;
②見解析.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/24 10:30:2組卷:300引用:3難度:0.5
相似題
-
1.已知△ABC是等邊三角形,四邊形ADEF是菱形,∠ADE=120°(AD>AB).
(1)如圖①,當(dāng)AD與邊BC相交,點(diǎn)D與點(diǎn)F在直線AC的兩側(cè)時(shí),BD與CF的數(shù)量關(guān)系為
(2)將圖①中的菱形ADEF繞點(diǎn)A旋轉(zhuǎn)α(0°<α<180°),如圖②.
Ⅰ.判斷(1)中的結(jié)論是否仍然成立,請(qǐng)利用圖②證明你的結(jié)論.
Ⅱ.若AC=4,AD=6,當(dāng)△ACE為直角三角形時(shí),直接寫出CE的長度.發(fā)布:2025/6/25 7:30:2組卷:365引用:4難度:0.1 -
2.探究問題:
(1)方法感悟:
如圖①,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
證明:延長CB到G,使BG=DE,連接AG,
∵四邊形ABCD為正方形,
∴AB=AD,∠ABC=∠D=90°,
∴∠ABG=∠D=90°,
∴△ADE≌△ABG.
∴AG=AE,∠1=∠2;
∵四邊形ABCD為正方形,
∴∠BAD=90°,
∵∠EAF=45°,
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,
∴∠1+∠3=45°.
即∠GAF=∠.
又AG=AE,AF=AF,
∴△GAF≌.
∴FG=EF,
∵FG=FB+BG,
又BG=DE,
∴DE+BF=EF.
變化:在圖①中,過點(diǎn)A作AM⊥EF于點(diǎn)M,請(qǐng)直接寫出AM和AB的數(shù)量關(guān)系 ;
(2)方法遷移:
如圖②,將Rt△ABC沿斜邊AC翻折得到Rt△ADC,E,F(xiàn)分別是BC,CD邊上的點(diǎn),∠EAF=∠BAD,連接EF,過點(diǎn)A作AM⊥EF于點(diǎn)M,試猜想DF,BE,EF之間有何數(shù)量關(guān)系,并證明你的猜想.試猜想AM與AB之間的數(shù)量關(guān)系,并證明你的猜想.12
(3)問題拓展:
如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點(diǎn),滿足∠EAF=∠DAB,試猜想當(dāng)∠B與∠D滿足什么關(guān)系時(shí),可使得DE+BF=EF.請(qǐng)直接寫出你的猜想(不必說明理由).猜想:∠B與∠D滿足關(guān)系:.12發(fā)布:2025/6/24 19:0:1組卷:881引用:1難度:0.1 -
3.如圖,四邊形ABCD是正方形,E是正方形ABCD內(nèi)一點(diǎn),F(xiàn)是正方形ABCD外一點(diǎn),連接BE、CE、DE、BF、CF、EF.
(1)若∠EDC=∠FBC,ED=FB,試判斷△ECF的形狀,并說明理由.
(2)在(1)的條件下,當(dāng)BE:CE=1:2,∠BEC=135°時(shí),求BE:BF的值.
(3)在(2)的條件下,若正方形ABCD的邊長為(3+3)cm,∠EDC=30°,求△BCF的面積.7發(fā)布:2025/6/24 17:30:1組卷:59引用:1難度:0.5