已知函數(shù)f(x)=|2x+a|+|2x-1|.
(1)若f(12)+f(-1)≥8,求實數(shù)a的取值范圍;
(2)若對任意的b∈(1,+∞),總存在x0使f(x0)<b+1b-1+1成立,求實數(shù)a的取值范圍.
f
(
1
2
)
+
f
(
-
1
)
≥
8
f
(
x
0
)
<
b
+
1
b
-
1
+
1
【考點】絕對值不等式的解法.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:32引用:5難度:0.5
相似題
-
1.已知函數(shù)f(x)=|x-1|+|2x+4|.
(1)求不等式f(x)>6的解集;
(2)記f(x)的最小值為m,已知a,b,c均為正實數(shù),且a+b+c=m,求1a+b+4b+c的最小值.+9c+a發(fā)布:2024/12/29 3:0:1組卷:102引用:4難度:0.5 -
2.已知函數(shù)f(x)=|ax+1|+|2x-1|(a∈R).
(1)當(dāng)a=1時,求不等式f(x)≥2的解集;
(2)若f(x)≤2x在x∈[,1]時恒成立,求a的取值范圍.12發(fā)布:2024/12/29 6:30:1組卷:101引用:6難度:0.1 -
3.若關(guān)于x的不等式|x-1|+|x+2|≤a在R上有解,則實數(shù)a的取值范圍是 .
發(fā)布:2024/12/29 6:0:1組卷:191引用:3難度:0.6