如圖,在10×10的網(wǎng)格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點.若拋物線經(jīng)過圖中的三個格點,則以這三個格點為頂點的三角形稱為拋物線的“內(nèi)接格點三角形”.以O為坐標原點建立如圖所示的平面直角坐標系,若拋物線與網(wǎng)格對角線OB的兩個交點之間的距離為32,且這兩個交點與拋物線的頂點是拋物線的內(nèi)接格點三角形的三個頂點,則滿足上述條件且對稱軸平行于y軸的拋物線條數(shù)是( ?。?/h1>
3
2
【考點】二次函數(shù)綜合題.
【答案】C
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:132引用:60難度:0.4
相似題
-
1.如圖所示,拋物線y=-x2+2x+3的圖象與x軸交于A,B兩點,與y軸交于點C,連結BC.
(1)求拋物線頂點D的坐標;
(2)在直線BC上方的拋物線上有一點M,使得四邊形ABMC的面積最大,求點M的坐標及四邊形ABMC面積的最大值;
(3)點E在拋物線上,當∠EBC=∠ACO時,直接寫出點E的坐標.發(fā)布:2025/5/22 1:30:1組卷:160引用:4難度:0.4 -
2.已知點P是二次函數(shù)
圖象的頂點.y1=-(x-m+1)2+m2-m-1
(1)小明發(fā)現(xiàn),對m取不同的值時,點P的位置也不同,但是這些點都在某一個函數(shù)的圖象上,請協(xié)助小明完成對這個函數(shù)表達式的探究:
①將下表填寫完整:m -1 0 1 2 3 P點坐標 (-2,1) (-1,-1)
(2)若過點(0,2),且平行于x軸的直線與的圖象有兩個交點A和B,與②中得到的函數(shù)圖象有兩個交點C和D,當AB=CD時,請求出此時的m值,寫出求解過程;y1=-(x-m+1)2+m2-m-1
(3)若,E(-1,-54),函數(shù)F(3,-54)的圖象與線段EF只有一個公共點,請結合函數(shù)圖象,直接寫出m的取值范圍.y1=-(x-m+1)2+m2-m-1發(fā)布:2025/5/22 1:30:1組卷:117引用:3難度:0.2 -
3.已知拋物線y=ax2+bx-4與x軸負半軸交于點A,與x軸正半軸交于點B,與y軸交于點C,且OB=OC=2OA.直線y=kx-2(k>0)與拋物線交于D,E兩點(點D在點E的左側),連接OD,OE.
(1)求拋物線的解析式;
(2)若△ODE的面積為,求k的值;42
(3)求證:不論k取何值,拋物線上都存在定點F,使得△DEF是以DE為斜邊的直角三角形.發(fā)布:2025/5/22 2:0:8組卷:643引用:1難度:0.3