以等邊三角形的每個頂點(diǎn)為圓心,以其邊長為半徑,在另兩個頂點(diǎn)間作一段圓弧,三段圓弧圍成的曲邊三角形被稱為勒洛三角形.如圖,在極坐標(biāo)系Ox中,曲邊三角形OPQ為勒洛三角形,且P(2,π3),Q在極軸上,C為?OP的中點(diǎn).以極點(diǎn)O為直角坐標(biāo)原點(diǎn),極軸Ox為x軸正半軸建立平面直角坐標(biāo)系xOy.
(1)求?OQ所在圓P的直角坐標(biāo)方程與直線CQ的極坐標(biāo)方程;
(2)過O引一條射線,分別交圓P,直線CQ于A,B兩點(diǎn),證明:|OA|?|OB|為定值.
P
(
2
,
π
3
)
?
OP
?
OQ
【考點(diǎn)】簡單曲線的極坐標(biāo)方程.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:83引用:3難度:0.6
相似題
-
1.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1:ρcosθ=3,曲線C2:ρ=4cosθ(
).0≤θ<π2
(1)求C1與C2交點(diǎn)的極坐標(biāo);
(2)設(shè)點(diǎn)Q在C2上,,求動點(diǎn)P的極坐標(biāo)方程.OQ=23QP發(fā)布:2024/12/29 3:0:1組卷:144引用:5難度:0.3 -
2.極坐標(biāo)方程ρcosθ=2sin2θ表示的曲線為( ?。?/h2>
發(fā)布:2024/12/29 2:30:1組卷:244引用:6難度:0.7 -
3.已知點(diǎn)的極坐標(biāo)是
,則它的直角坐標(biāo)是(3,π4)發(fā)布:2024/12/29 12:30:1組卷:12引用:2難度:0.7
相關(guān)試卷