試卷征集
加入會(huì)員
操作視頻

已知橢圓C:
x
2
a
2
+
y
2
b
2
=
1
a
b
0
,左焦點(diǎn)
F
-
3
,
0
,且離心率
e
=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:y=kx+m(k≠0)與橢圓C交于不同的兩點(diǎn)M,N(M,N不是左、右頂點(diǎn)),且以MN為直徑的圓經(jīng)過橢圓C的右頂點(diǎn)A.求證:直線l過定點(diǎn),并求出定點(diǎn)的坐標(biāo).

【答案】(Ⅰ)
x
2
4
+
y
2
=
1

(II)證明:設(shè)M(x1,y1)  N(x2,y2),
右頂點(diǎn)A(2,0)
AM
=
2
-
x
1
y
1
,
AN
=
2
-
x
2
,
y
2
,
∵以MN為直徑的圓經(jīng)過橢圓C的右頂點(diǎn)A,
∴(2-x2)(2-x1)+y1y2=0,
∵y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2
∴4+(km-2)(x1+x2)+(1+k2)x1x2+m2=0  ①
把y=kx+m代入橢圓方程
x
2
4
+
y
2
=
1
,
x
2
4
+(kx+m)2=1,
整理,得(
1
4
+k2)x2+2kmx+m2-1=0,
所以x1x2=
m
2
-
1
1
4
+
k
2
,x1+x2=-
2
km
1
4
+
k
2
,②
把②入①,得
4+(km-2)?(-
2
km
1
4
+
k
2
)+(1+k2)?
m
2
-
1
1
4
+
k
2
+m2
=(5m2+16km+12k2)÷(1+4k2
=(m+2k)(5m+6k)÷(1+4k2
=0
所以m+2k=0 或者 m+
6
5
k=0
當(dāng)m+2k=0時(shí),直線y=kx-2k恒過點(diǎn)(2,0)和A點(diǎn)重合顯然不符合
當(dāng)m+
6
5
k=0時(shí) 直線恒過點(diǎn)(
6
5
,0)符合題意
所以該定點(diǎn)坐標(biāo)就是(
6
5
,0).
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:152引用:6難度:0.1
相似題
  • 1.點(diǎn)P在以F1,F(xiàn)2為焦點(diǎn)的雙曲線
    E
    x
    2
    a
    2
    -
    y
    2
    b
    2
    =
    1
    (a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標(biāo)原點(diǎn).
    (Ⅰ)求雙曲線的離心率e;
    (Ⅱ)過點(diǎn)P作直線分別與雙曲線漸近線相交于P1,P2兩點(diǎn),且
    O
    P
    1
    ?
    O
    P
    2
    =
    -
    27
    4
    2
    P
    P
    1
    +
    P
    P
    2
    =
    0
    ,求雙曲線E的方程;
    (Ⅲ)若過點(diǎn)Q(m,0)(m為非零常數(shù))的直線l與(2)中雙曲線E相交于不同于雙曲線頂點(diǎn)的兩點(diǎn)M、N,且
    MQ
    =
    λ
    QN
    (λ為非零常數(shù)),問在x軸上是否存在定點(diǎn)G,使
    F
    1
    F
    2
    GM
    -
    λ
    GN
    ?若存在,求出所有這種定點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說明理由.

    發(fā)布:2024/12/29 10:0:1組卷:72引用:5難度:0.7
  • 2.已知兩個(gè)定點(diǎn)坐標(biāo)分別是F1(-3,0),F(xiàn)2(3,0),曲線C上一點(diǎn)任意一點(diǎn)到兩定點(diǎn)的距離之差的絕對(duì)值等于2
    5

    (1)求曲線C的方程;
    (2)過F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點(diǎn),求△ABF2的面積.

    發(fā)布:2024/12/29 10:30:1組卷:102引用:1難度:0.9
  • 3.若過點(diǎn)(0,-1)的直線l與拋物線y2=2x有且只有一個(gè)交點(diǎn),則這樣的直線有( ?。l.

    發(fā)布:2024/12/29 10:30:1組卷:26引用:5難度:0.7
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正