學(xué)習(xí)《第九章乘法公式與因式分解》時(shí),我們借助拼圖驗(yàn)證了許多乘法公式,反過來,我們也可以利用拼圖,將一些多項(xiàng)式因式分解,這是研究數(shù)學(xué)問題的一種常用方法.如圖(1),有足夠多的邊長為a的大正方形,長為a,寬為b的長方形和邊長為b的小正方形.
(1)利用拼圖將多項(xiàng)式2a2+5ab+2b2進(jìn)行因式分解,畫出你的拼圖,并寫出因式分解的結(jié)果;
2a2+5ab+2b2=(a+2b)(2a+b)(a+2b)(2a+b).
(2)若多項(xiàng)式9a2+12ab+kb2(k為正整數(shù))可以用拼圖法因式分解,則k=44;
(3)如圖(2),它是由四個(gè)形狀、大小完全相同的直角三角形與中間的小正方形EFGH拼成的一個(gè)大正方形ABCD.如果每個(gè)直角三角形的較短的邊長為a,較長的邊長為b,最長的邊長為c.你能發(fā)現(xiàn)直角三角形的三邊長a、b、c的什么數(shù)量關(guān)系?(注:寫出解答過程)
【考點(diǎn)】因式分解的應(yīng)用;完全平方公式的幾何背景.
【答案】(a+2b)(2a+b);4
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:263引用:2難度:0.5
相似題
-
1.閱讀下列題目的解題過程:
已知a、b、c為△ABC的三邊長,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問:(1)上述解題過程,從哪一步開始出現(xiàn)錯(cuò)誤?請(qǐng)寫出該步的代號(hào):;
(2)錯(cuò)誤的原因?yàn)椋?!--BA-->;
(3)本題正確的結(jié)論為:.發(fā)布:2024/12/23 18:0:1組卷:2517引用:25難度:0.6 -
2.若a是整數(shù),則a2+a一定能被下列哪個(gè)數(shù)整除( ?。?/h2>
發(fā)布:2024/12/24 6:30:3組卷:388引用:7難度:0.6 -
3.閱讀理解:
能被7(或11或13)整除的特征:如果一個(gè)自然數(shù)末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是7(或11或13)的倍數(shù),則這個(gè)數(shù)就能被7(或11或13)整除.
如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
(1)用材料中的方法驗(yàn)證67822615是7的倍數(shù)(寫明驗(yàn)證過程);
(2)若對(duì)任意一個(gè)七位數(shù),末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是11的倍數(shù),證明這個(gè)七位數(shù)一定能被11整除.發(fā)布:2025/1/5 8:0:1組卷:122引用:3難度:0.4