如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形.設(shè)直角三角形較長直角邊長為a,較短直角邊長為b,若ab=8,大正方形的面積為25,則小正方形的面積為( ?。?/h1>
【考點】勾股定理的證明.
【答案】A
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:302引用:4難度:0.7
相似題
-
1.利用圖(1)或圖(2)兩個圖形中的有關(guān)面積的等量關(guān)系都能證明數(shù)學(xué)中一個十分著名
的定理,這個定理稱為
發(fā)布:2025/6/21 16:30:1組卷:813引用:10難度:0.7 -
2.歷史上對勾股定理的一種證法采用了下列圖形:其中兩個全等的直角三角形邊AE、EB在一條直線上.證明中用到的面積相等關(guān)系是( ?。?/h2>
發(fā)布:2025/6/21 17:0:2組卷:1042引用:15難度:0.7 -
3.“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲.如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形.設(shè)直角三角形較長直角邊長為a,較短直角邊長為b.若ab=8,大正方形的面積為25,則小正方形的邊長為( ?。?/h2>
發(fā)布:2025/6/21 17:0:2組卷:8219引用:68難度:0.7