試卷征集
加入會(huì)員
操作視頻

【問題提出】:
菁優(yōu)網(wǎng)
(1)如圖1,在Rt△ACB中,∠ACB=90°,AC=5,BC=12,則cos∠BAC=
5
13
5
13

【問題探究】:
(2)如圖2,在矩形ABCD中,AB=6,BC=8,在矩形內(nèi)部有一動(dòng)點(diǎn)P,滿足tan∠APB=3.小明打算找出P到CD的最短距離.他的操作如下:
在BC上取一點(diǎn)E,使得BE=2,連接AE,作△ABE的外接圓,圓心為O,AE為直徑,過點(diǎn)O作CD的垂線,交⊙O于點(diǎn)P,交CD于點(diǎn)F,此時(shí)P到CD的距離最短.
問:以上操作是否合理?若合理,請(qǐng)求出P到CD的最短距離.若不合理,請(qǐng)說明理由.
【問題解決】:
(3)如圖3,某學(xué)校的人工智能教室是矩形ABCD形狀,其中AB=8米,BC=10米,為了提高課堂上小組合作學(xué)習(xí)的效率,學(xué)校想把教室設(shè)計(jì)成幾部分.設(shè)計(jì)思路如下:在矩形ABCD內(nèi)部找一點(diǎn)P,連接AP,BP,DP,使得
S
APD
=
5
9
S
四邊形
ABPD
,且
cos
APB
=
3
5
.其中△APD是老師課堂展示部分,△ABP是小組合作交流部分,剩下的四邊形BCDP是學(xué)生創(chuàng)造性設(shè)計(jì)部分.請(qǐng)計(jì)算課堂展示部分△APD的面積.

【考點(diǎn)】圓的綜合題
【答案】
5
13
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/24 0:0:9組卷:285引用:1難度:0.2
相似題
  • 菁優(yōu)網(wǎng)1.如圖,矩形ABCD中,AB=13,AD=6.點(diǎn)E是CD上的動(dòng)點(diǎn),以AE為直徑的⊙O與AB交于點(diǎn)F,過點(diǎn)F作FG⊥BE于點(diǎn)G.
    (1)當(dāng)E是CD的中點(diǎn)時(shí):tan∠EAB的值為
    ;
    (2)在(1)的條件下,證明:FG是⊙O的切線;
    (3)試探究:BE能否與⊙O相切?若能,求出此時(shí)BE的長(zhǎng);若不能,請(qǐng)說明理由.

    發(fā)布:2024/12/23 12:0:2組卷:653引用:5難度:0.4
  • 菁優(yōu)網(wǎng)2.如圖,AB是⊙O的直徑,AC是弦,直線EF經(jīng)過點(diǎn)C,AD⊥EF于點(diǎn)D,∠DAC=∠BAC.
    (1)求證:EF是⊙O的切線;
    (2)求證:AC2=AD?AB;
    (3)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.

    發(fā)布:2024/12/23 9:0:2組卷:1804引用:34難度:0.7
  • 3.在平面直角坐標(biāo)系xOy中,⊙O的半徑為1,P是坐標(biāo)系內(nèi)任意一點(diǎn),點(diǎn)P到⊙O的距離SP的定義如下:若點(diǎn)P與圓心O重合,則SP為⊙O的半徑長(zhǎng);若點(diǎn)P與圓心O不重合,作射線OP交⊙O于點(diǎn)A,則SP為線段AP的長(zhǎng)度.
    圖1為點(diǎn)P在⊙O外的情形示意圖.
    菁優(yōu)網(wǎng)
    (1)若點(diǎn)B(1,0),C(1,1),
    D
    0
    ,
    1
    3
    ,則SB=
     
    ;SC=
     
    ;SD=
     
    ;
    (2)若直線y=x+b上存在點(diǎn)M,使得SM=2,求b的取值范圍;
    (3)已知點(diǎn)P,Q在x軸上,R為線段PQ上任意一點(diǎn).若線段PQ上存在一點(diǎn)T,滿足T在⊙O內(nèi)且ST≥SR,直接寫出滿足條件的線段PQ長(zhǎng)度的最大值.

    發(fā)布:2024/12/23 11:0:1組卷:618引用:11難度:0.1
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正