“難度系數(shù)”反映試題的難易程度,難度系數(shù)越大,題目得分率越高,難度也就越小,“難度系數(shù)”的計(jì)算公式為L=1-YW,其中L為難度系數(shù),Y為樣本平均失分,W為試卷總分(一般為100分或150分).某校高二年級(jí)的老師命制了某專題共5套測(cè)試卷(總分150分),用于對(duì)該校高二年級(jí)480名學(xué)生進(jìn)行每周測(cè)試,測(cè)試前根據(jù)自己對(duì)學(xué)生的了解,預(yù)估了每套試卷的難度系數(shù),如下表所示:
L
=
1
-
Y
W
試卷序號(hào)i | 1 | 2 | 3 | 4 | 5 |
考前預(yù)估難度系數(shù)Li | 0.7 | 0.64 | 0.6 | 0.6 | 0.55 |
試卷序號(hào)i | 1 | 2 | 3 | 4 | 5 |
平均分/分 | 102 | 99 | 93 | 93 | 87 |
(2)試卷的預(yù)估難度系數(shù)和實(shí)測(cè)難度系數(shù)之間會(huì)有偏差,設(shè)Li′為第i套試卷的實(shí)測(cè)難度系數(shù),并定義統(tǒng)計(jì)量
S
=
1
n
[
(
L
′
1
-
I
i
)
2
+
(
L
′
2
-
L
2
)
2
+
?
+
(
L
′
n
-
L
n
)
2
]
(3)聰聰與明明是學(xué)習(xí)上的好伙伴,兩人商定以同時(shí)解答上述試卷易錯(cuò)題進(jìn)行“智力競(jìng)賽”,規(guī)則如下:雙方輪換選題,每人每次只選1道題,先正確解答者記1分,否則計(jì)0分,先多得2分者為勝方.若在此次競(jìng)賽中,聰聰選題時(shí)聰聰?shù)梅值母怕蕿?div id="6666666" class="MathJye" mathtag="math">
2
3
1
2
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/21 9:0:9組卷:27引用:3難度:0.5
相似題
-
1.已知隨機(jī)變量ξ1和ξ2的分布列如表:
ξ1 0 5 10 p 0.33 0.34 0.33 ξ2 1 4 7 p 0.01 0.98 0.01 發(fā)布:2024/12/27 19:0:4組卷:117引用:1難度:0.7 -
2.每年5月17日為國(guó)際電信日,某市電信公司每年在電信日當(dāng)天對(duì)辦理應(yīng)用套餐的客戶進(jìn)行優(yōu)惠,優(yōu)惠方案如下:選擇套餐一的客戶可獲得優(yōu)惠200元,選擇套餐二的客戶可獲得優(yōu)惠500元,選擇套餐三的客戶可獲得優(yōu)惠300元.根據(jù)以往的統(tǒng)計(jì)結(jié)果繪出電信日當(dāng)天參與活動(dòng)的統(tǒng)計(jì)圖,現(xiàn)將頻率視為概率.
(1)求某兩人選擇同一套餐的概率;
(2)若用隨機(jī)變量X表示某兩人所獲優(yōu)惠金額的總和,求X的分布列和數(shù)學(xué)期望.發(fā)布:2024/12/18 8:0:1組卷:147引用:5難度:0.1 -
3.隨機(jī)變量X的分布列如表所示,若
,則D(3X-2)=.E(X)=13X -1 0 1 P 16a b 發(fā)布:2024/12/18 18:30:1組卷:212引用:9難度:0.6
把好題分享給你的好友吧~~