試卷征集
加入會(huì)員
操作視頻

閱讀下列材料,然后解答問(wèn)題.
學(xué)會(huì)從不同的角度思考問(wèn)題學(xué)完平方差公式后,小軍展示了以下例題.
例:求(2+1)(22+1)(24+1)(28+1)(216+1)+1的值的末尾數(shù)字.
解:原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)+1
=(22-1)(22+1)(24+1)(28+1)(216+1)+1
=(24-1)(24+1)(28+1)(216+1)+1
=(28-1)(28+1)(216+1)+1
=(216-1)(216+1)+1
=232
由2n(n為正整數(shù))的末尾數(shù)字的規(guī)律,可得232末尾數(shù)字是6.愛(ài)動(dòng)腦筋的小明,想出了一種新的解法:因?yàn)?2+1=5,而2+1,24+1,28+1,216+1均為奇數(shù),幾個(gè)奇數(shù)與5相乘,末尾數(shù)字是5,這樣原式的末尾數(shù)字是6.
在數(shù)學(xué)學(xué)習(xí)中,要向小明那樣,學(xué)會(huì)觀察,獨(dú)立思考,嘗試從不同角度分析問(wèn)題,這樣才能學(xué)好數(shù)學(xué).
請(qǐng)解答下列問(wèn)題:
(1)(2+1)(22+1)(23+1)(24+1)(25+1)?(2n+1)+1(n為正整數(shù))的值的末尾數(shù)字是
6
6

(2)計(jì)算:2(3+1)(32+1)(34+1)(38+1)+1.

【答案】6
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/15 5:0:8組卷:296引用:1難度:0.8
相似題
  • 1.下列多項(xiàng)式乘法中可以用平方差公式計(jì)算的是( ?。?/h2>

    發(fā)布:2024/12/23 13:0:2組卷:228引用:4難度:0.7
  • 2.已知x+y=2,x-y=4,則x2-y2=

    發(fā)布:2024/12/23 13:30:1組卷:233引用:4難度:0.8
  • 3.下列各式能用平方差公式計(jì)算的是( ?。?/h2>

    發(fā)布:2024/12/23 16:30:2組卷:43引用:5難度:0.7
小程序二維碼
把好題分享給你的好友吧~~
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱(chēng):菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶(hù)服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正