閱讀下面的證明過程:
如圖1,△ACB、△ADC和△BEC都是直角三角形,其中AC=BC,且直角頂點(diǎn)都在直線l上,求證:△ACD≌△CBE.
證明:由題意,∠BCE+∠ACD=180°-90°=90°,∠DAC+∠ACD=90°.
∴∠DAC=∠BCE.
在△ACD和△CBE中,
∠ADC=∠CEB ∠DAC=∠BCE AC=BC
,
∴△ACD≌△CBE.
像這種“在一條直線上有三個(gè)直角頂點(diǎn)”的幾何圖形,我們一般稱其為“一線三垂直”圖形,隨著幾何學(xué)習(xí)的深入,我們還將對(duì)這類圖形有更深入的探索.
請(qǐng)結(jié)合以上閱讀,解決下列問題:
(1)如圖2,在△ABC中,∠BAC=90°,AB=AC,過點(diǎn)A作直線AE,BD⊥AE于點(diǎn)D,CE⊥AE于點(diǎn)E,探索BD、DE、CE之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(2)如圖3,△ABC和△ADE都是等腰直角三角形,∠ACB=∠AED=90°,AC=BC,AE=DE,且點(diǎn)E在BC上,連接BD,求證:∠ABD=90°.
?
(3)如圖4,在一款名為超級(jí)瑪麗的游戲中,瑪麗到達(dá)一個(gè)高為12米的高臺(tái)A,利用旗桿頂部的繩索,劃過90°到達(dá)與高臺(tái)A水平距離為18米,高為4米的矮臺(tái)B,請(qǐng)寫出旗桿OM的高度是 17米17米.(不必書寫解題過程)
?
∠ ADC =∠ CEB |
∠ DAC =∠ BCE |
AC = BC |
【考點(diǎn)】三角形綜合題.
【答案】17米
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/2 6:0:2組卷:267引用:2難度:0.6
相似題
-
1.已知直角△ABC,∠BAC=90°,D是斜邊BC的中點(diǎn),E、F分別是AB、AC邊上的點(diǎn),且DE⊥DF,連接EF.
(1)如圖1,求證:∠BED=∠AFD;
(2)如圖1,求證:BE2+CF2=EF2;
(3)如圖2,當(dāng)∠ABC=45°,若BE=4,CF=3,求△DEF的面積.發(fā)布:2024/12/23 14:0:1組卷:181引用:3難度:0.2 -
2.已知A(0,4),B(-4,0),D(9,4),C(12,0),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在線段AD上,以每秒1個(gè)單位的速度向點(diǎn)D運(yùn)動(dòng):動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在線段BC上,以每秒2個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)P、Q同時(shí)出發(fā),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)t=秒時(shí),PQ平分線段BD;
(2)當(dāng)t=秒時(shí),PQ⊥x軸;
(3)當(dāng)時(shí),求t的值.∠PQC=12∠D發(fā)布:2024/12/23 15:0:1組卷:140引用:3難度:0.1 -
3.一副三角板如圖1擺放,∠C=∠DFE=90°,∠B=30°,∠E=45°,點(diǎn)F在BC上,點(diǎn)A在DF上,且AF平分∠CAB,現(xiàn)將三角板DFE繞點(diǎn)F順時(shí)針旋轉(zhuǎn)(當(dāng)點(diǎn)D落在射線FB上時(shí)停止旋轉(zhuǎn)).
(1)當(dāng)∠AFD=°時(shí),DF∥AC;當(dāng)∠AFD=°時(shí),DF⊥AB;
(2)在旋轉(zhuǎn)過程中,DF與AB的交點(diǎn)記為P,如圖2,若△AFP有兩個(gè)內(nèi)角相等,求∠APD的度數(shù);
(3)當(dāng)邊DE與邊AB、BC分別交于點(diǎn)M、N時(shí),如圖3,若∠AFM=2∠BMN,比較∠FMN與∠FNM的大小,并說明理由.發(fā)布:2024/12/23 18:30:1組卷:1658引用:10難度:0.1
把好題分享給你的好友吧~~