某商場(chǎng)經(jīng)營(yíng)某種品牌的玩具,購(gòu)進(jìn)時(shí)的單價(jià)是30元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷售單價(jià)是40元時(shí),銷售量是600件,而銷售單價(jià)每漲1元,就會(huì)少售出10件玩具.
(1)不妨設(shè)該種品牌玩具的銷售單價(jià)為x元(x>40),請(qǐng)你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤(rùn)w元,并把結(jié)果填寫在表格中:
銷售單價(jià)(元) | x |
銷售量y(件) | 1000-10x 1000-10x
|
銷售玩具獲得利潤(rùn)w(元) | -10x2+1300x-30000 -10x2+1300x-30000
|
(3)在(1)問條件下,若玩具廠規(guī)定該品牌玩具銷售單價(jià)不低于44元,且商場(chǎng)要完成不少于540件的銷售任務(wù),求商場(chǎng)銷售該品牌玩具獲得的最大利潤(rùn)是多少?
【考點(diǎn)】二次函數(shù)的應(yīng)用;一元二次方程的應(yīng)用.
【答案】1000-10x;-10x2+1300x-30000
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/24 15:0:1組卷:1584引用:88難度:0.3
相似題
-
1.某商店經(jīng)銷一種學(xué)生用雙肩包,已知這種雙肩包的成本價(jià)為每個(gè)30元,市場(chǎng)調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷售量y(個(gè))與銷售單價(jià)x(元)有如下關(guān)系:y=-x+60(30≤x≤60).設(shè)這種雙肩包每天的銷售利潤(rùn)為w元.
(1)求w與x之間的函數(shù)解析式;
(2)這種雙肩包銷售單價(jià)定為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?
(3)如果物價(jià)部門規(guī)定這種雙肩包的銷售單價(jià)不高于42元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤(rùn),銷售單價(jià)應(yīng)定為多少元?發(fā)布:2025/6/13 22:30:1組卷:2928引用:34難度:0.1 -
2.某超市銷售一種飲料,平均每天可售出100箱,每箱利潤(rùn)為120元,為了擴(kuò)大銷售,盡快減少庫(kù)存,超市準(zhǔn)備適當(dāng)降價(jià),據(jù)測(cè)算,若每箱降價(jià)2元,則每天多售出4箱.
(1)如果要使每天銷售飲料獲利14000元,則每箱應(yīng)該降價(jià)多少元?
(2)每天銷售該飲料獲利能達(dá)到14500元嗎?若能,則每箱應(yīng)該降價(jià)多少?若不能,請(qǐng)說明理由.
(3)要使每天銷售飲料獲利最大,每箱應(yīng)該降價(jià)多少元?最大獲利是多少?發(fā)布:2025/6/13 22:30:1組卷:385引用:3難度:0.7 -
3.某商店經(jīng)營(yíng)兒童益智玩具,已知成批購(gòu)進(jìn)時(shí)的單價(jià)是20元.調(diào)查發(fā)現(xiàn):銷售單價(jià)是30元時(shí),月銷售量是230件,而銷售單價(jià)每上漲1元,月銷售量就減少10件,但每件玩具售價(jià)不能高于40元.設(shè)每件玩具的銷售單價(jià)上漲了x元時(shí)(x為正整數(shù)),月銷售利潤(rùn)為y元.
(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍.
(2)每件玩具的售價(jià)定為多少元時(shí),月銷售利潤(rùn)恰為2520元?
(3)每件玩具的售價(jià)定為多少元時(shí)可使月銷售利潤(rùn)最大?最大的月利潤(rùn)是多少?發(fā)布:2025/6/13 23:0:1組卷:2462引用:91難度:0.5
相關(guān)試卷