試卷征集
加入會(huì)員
操作視頻

王老師打算在所教授的兩個(gè)班級(jí)中舉行數(shù)學(xué)知識(shí)競(jìng)賽,分為個(gè)人晉級(jí)賽和團(tuán)體對(duì)決賽.個(gè)人晉級(jí)賽規(guī)則:每人只有一次挑戰(zhàn)機(jī)會(huì),電腦隨機(jī)給出5道題,答對(duì)3道或3道以上即可晉級(jí).團(tuán)體對(duì)決賽規(guī)則:以班級(jí)為單位,每班參賽人數(shù)不少于20人,且參賽人數(shù)為偶數(shù),參賽方式有如下兩種可自主選擇其中之一參賽:
方式一:將班級(jí)選派的2n個(gè)人平均分成n組,每組2人,電腦隨機(jī)分配給同組兩個(gè)人一道相同試題,兩人同時(shí)獨(dú)立答題,若這兩人中至少有一人回答正確,則該小組闖關(guān)成功.若這n個(gè)小組都闖關(guān)成功,則該班級(jí)挑戰(zhàn)成功.
方式二:將班級(jí)選派的2n個(gè)人平均分成2組,每組n人,電腦隨機(jī)分配給同組n個(gè)人一道相同試題,各人同時(shí)獨(dú)立答題,若這n個(gè)人都回答正確,則該小組闖關(guān)成功.若這2個(gè)小組至少有一個(gè)小組闖關(guān)成功則該班級(jí)挑戰(zhàn)成功.
(1)甲同學(xué)參加個(gè)人晉級(jí)賽,他答對(duì)前三題的概率均為
1
2
,答對(duì)后兩題的概率均為
1
3
,求甲同學(xué)能晉級(jí)的概率;
(2)在團(tuán)體對(duì)決賽中,假設(shè)某班每位參賽同學(xué)對(duì)給出的試題回答正確的概率均為常數(shù)p(0<p<1),為使本班團(tuán)隊(duì)挑戰(zhàn)成功的可能性更大,應(yīng)選擇哪種參賽方式?說明你的理由.

【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/13 8:0:9組卷:180引用:2難度:0.2
相似題
  • 1.某市舉行“中學(xué)生詩(shī)詞大賽”,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:初賽成績(jī)大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績(jī)均在區(qū)間(30,150]內(nèi),其頻率分布直方圖如圖.
    (Ⅰ)求獲得復(fù)賽資格的人數(shù);
    (Ⅱ)從初賽得分在區(qū)間(110,150]的參賽者中,利用分層抽樣的方法隨機(jī)抽取7人參加學(xué)校座談交流,那么從得分在區(qū)間(110,130]與(130,150]各抽取多少人?
    (Ⅲ)從(Ⅱ)抽取的7人中,選出3人參加全市座談交流,設(shè)X表示得分在區(qū)間(130,150]中參加全市座談交流的人數(shù),求X的分布列及數(shù)學(xué)期望E(X).

    發(fā)布:2024/12/29 13:30:1組卷:126引用:7難度:0.5
  • 2.設(shè)離散型隨機(jī)變量X的分布列如表:
    X 1 2 3 4 5
    P m 0.1 0.2 n 0.3
    若離散型隨機(jī)變量Y=-3X+1,且E(X)=3,則( ?。?/h2>

    發(fā)布:2024/12/29 13:0:1組卷:181引用:5難度:0.5
  • 3.從4名男生和2名女生中任選3人參加演講比賽,用X表示所選3人中女生的人數(shù),則E(X)為( ?。?/h2>

    發(fā)布:2024/12/29 13:30:1組卷:129引用:6難度:0.7
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正