王老師打算在所教授的兩個班級中舉行數(shù)學知識競賽,分為個人晉級賽和團體對決賽.個人晉級賽規(guī)則:每人只有一次挑戰(zhàn)機會,電腦隨機給出5道題,答對3道或3道以上即可晉級.團體對決賽規(guī)則:以班級為單位,每班參賽人數(shù)不少于20人,且參賽人數(shù)為偶數(shù),參賽方式有如下兩種可自主選擇其中之一參賽:
方式一:將班級選派的2n個人平均分成n組,每組2人,電腦隨機分配給同組兩個人一道相同試題,兩人同時獨立答題,若這兩人中至少有一人回答正確,則該小組闖關成功.若這n個小組都闖關成功,則該班級挑戰(zhàn)成功.
方式二:將班級選派的2n個人平均分成2組,每組n人,電腦隨機分配給同組n個人一道相同試題,各人同時獨立答題,若這n個人都回答正確,則該小組闖關成功.若這2個小組至少有一個小組闖關成功則該班級挑戰(zhàn)成功.
(1)甲同學參加個人晉級賽,他答對前三題的概率均為12,答對后兩題的概率均為13,求甲同學能晉級的概率;
(2)在團體對決賽中,假設某班每位參賽同學對給出的試題回答正確的概率均為常數(shù)p(0<p<1),為使本班團隊挑戰(zhàn)成功的可能性更大,應選擇哪種參賽方式?說明你的理由.
1
2
1
3
【答案】(1);
(2)選擇方式一參賽,理由見解析.
3
8
(2)選擇方式一參賽,理由見解析.
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/13 8:0:9組卷:199引用:2難度:0.2
相似題
-
1.某市舉行“中學生詩詞大賽”,分初賽和復賽兩個階段進行,規(guī)定:初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區(qū)間(30,150]內,其頻率分布直方圖如圖.
(Ⅰ)求獲得復賽資格的人數(shù);
(Ⅱ)從初賽得分在區(qū)間(110,150]的參賽者中,利用分層抽樣的方法隨機抽取7人參加學校座談交流,那么從得分在區(qū)間(110,130]與(130,150]各抽取多少人?
(Ⅲ)從(Ⅱ)抽取的7人中,選出3人參加全市座談交流,設X表示得分在區(qū)間(130,150]中參加全市座談交流的人數(shù),求X的分布列及數(shù)學期望E(X).發(fā)布:2024/12/29 13:30:1組卷:134引用:7難度:0.5 -
2.設離散型隨機變量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 A.m=0.1 B.n=0.1 C.E(Y)=-8 D.D(Y)=-7.8 發(fā)布:2024/12/29 13:0:1組卷:201引用:6難度:0.5 -
3.從4名男生和2名女生中任選3人參加演講比賽,用X表示所選3人中女生的人數(shù),則E(X)為( ?。?/h2>
A.0 B.1 C.2 D.3 發(fā)布:2024/12/29 13:30:1組卷:139引用:6難度:0.7