閱讀材料:
例 分解因式x2+6x-7.
解:原式=x2+2x×3+32-32-7
=(x2+2x×3+32)-32-7
=(x+3)2-42
=(x+3+4)(x+3-4)
=(x+7)(x-1).
上述例子用到了“在式子變形中,先添加一個適當(dāng)?shù)捻?,使式子中出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變,這種方法叫配方法”.請根據(jù)這種方法解答下列問題:
分解因式:
(1)a2-6a-16;
(2)4a2-16ab+15b2.
【考點】因式分解-十字相乘法等;完全平方式.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:797引用:4難度:0.3
相似題
-
1.閱讀并解決問題.
對于形如x2+2ax+a2這樣的二次三項式,可以用公式法將它分解成(x+a)2的形式.但對于二次三項式x2+2ax-3a2,就不能直接運用公式了.
此時,我們可以在二次三項式x2+2ax-3a2中先加上一項a2,使它與x2+2ax的和成為一個完全平方式,再減去a2,整個式子的值不變,于是有:x2+2ax-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-(2a)2=(x+3a)(x-a).
像這樣,先添一個適當(dāng)項,使式中出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變的方法稱為“配方法”,請用“配方法”解決以下問題.
(1)利用“配方法”分解因式:a2-4a-12;
(2)19世紀(jì)的法國數(shù)學(xué)家蘇菲熱門解決了“把x4+4分解因式”這個問題:x4+4=x4+4x2+4-4x2=(x2+2)2-4x2=(x2+2)2-(2x)2=(x2+2x+2)(x2-2x+2).請你把x4+64y4因式分解;
(3)若2m2-4mn+3n2-8n+16=0,求m和n的值.發(fā)布:2025/6/6 11:30:1組卷:921引用:3難度:0.6 -
2.若x2+ax-24=(x+2)(x-12),則a的值為( )
發(fā)布:2025/6/6 10:0:1組卷:985引用:5難度:0.8 -
3.(1)因式分解:(a+1)(a-5)+9;
(2)解不等式:.12(x-1)-1>2x發(fā)布:2025/6/6 6:0:1組卷:95引用:1難度:0.9
相關(guān)試卷