試卷征集
加入會員
操作視頻

菁優(yōu)網(wǎng)某公司欲生產(chǎn)一款迎春工藝品回饋消費(fèi)者,工藝品的平面設(shè)計(jì)如圖所示,該工藝品由直角△ABC和以BC為直徑的半圓拼接而成,點(diǎn)P為半圈上一點(diǎn)(異于B,C),點(diǎn)H在線段AB上,且滿足CH⊥AB.已知∠ACB=90°,AB=1dm,設(shè)∠ABC=θ.
(1)為了使工藝禮品達(dá)到最佳觀賞效果,需滿足∠ABC=∠PCB,且CA+CP達(dá)到最大.當(dāng)θ為何值時(shí),工藝禮品達(dá)到最佳觀賞效果;
(2)為了工藝禮品達(dá)到最佳穩(wěn)定性便于收藏,需滿足∠PBA=60°,且CH+CP達(dá)到最大.當(dāng)θ為何值時(shí),CH+CP取得最大值,并求該最大值.

【考點(diǎn)】三角函數(shù)應(yīng)用
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:296引用:19難度:0.5
相似題
  • 菁優(yōu)網(wǎng)1.長春某日氣溫y(℃)是時(shí)間t(0≤t≤24,單位:小時(shí))的函數(shù),該曲線可近似地看成余弦型函數(shù)y=Acos(ωt+φ)+b的圖象.
    (1)根據(jù)圖像,試求y=Acos(ωt+φ)+b(A>0,ω>0,0<φ<π)的表達(dá)式;
    (2)大數(shù)據(jù)統(tǒng)計(jì)顯示,某種特殊商品在室外銷售可獲3倍于室內(nèi)銷售的利潤,但對室外溫度要求是氣溫不能低于23℃.根據(jù)(1)中所得模型,一個24小時(shí)營業(yè)的商家想獲得最大利潤,應(yīng)在什么時(shí)間段(用區(qū)間表示)將該種商品放在室外銷售,單日室外銷售時(shí)間最長不能超過多長時(shí)間?(忽略商品搬運(yùn)時(shí)間及其它非主要因素,理想狀態(tài)下?。?/h2>

    發(fā)布:2024/12/29 7:30:2組卷:38引用:4難度:0.5
  • 2.筒車是我國古代發(fā)明的一種水利灌溉工具,既經(jīng)濟(jì)又環(huán)保.明朝科學(xué)家徐光啟在《農(nóng)政全書》中用圖畫描繪了筒車的工作原理(圖1).假定在水流量穩(wěn)定的情況下,筒車上的每一個盛水筒都做勻速圓周運(yùn)動如圖2,將筒車抽象為一個半徑為R的圓,設(shè)筒車按逆時(shí)針方向每旋轉(zhuǎn)一周用時(shí)120秒,當(dāng)t=0時(shí),盛水筒M位于點(diǎn)
    P
    0
    3
    ,-
    3
    3
    ,經(jīng)過t秒后運(yùn)動到點(diǎn)P(x,y),點(diǎn)P的縱坐標(biāo)滿足y=f(t)=Rsin(ωt+φ)(t≥0,ω>0,|φ|<
    π
    2
    ),則當(dāng)筒車旋轉(zhuǎn)100秒時(shí),盛水筒M對應(yīng)的點(diǎn)P的縱坐標(biāo)為

    菁優(yōu)網(wǎng)

    發(fā)布:2024/12/29 7:0:1組卷:70引用:2難度:0.7
  • 3.某實(shí)驗(yàn)室白天的溫度f(t)(單位:℃)隨時(shí)間t(單位:h)的變化近似滿足函數(shù)關(guān)系:
    f
    t
    =
    10
    -
    2
    sin
    π
    12
    t
    +
    π
    3
    ,t∈[6,18].
    (1)求實(shí)驗(yàn)室白天的最大溫差;
    (2)若要求實(shí)驗(yàn)室溫度高于11℃,則在哪段時(shí)間實(shí)驗(yàn)室需要降溫?

    發(fā)布:2024/12/29 9:0:1組卷:148引用:3難度:0.7
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正