在平面直角坐標(biāo)系中,已知y=-12x2+bx+c(b、c為常數(shù))的頂點為P,等腰直角三角形ABC的頂點A的坐標(biāo)為(0,-1),點C的坐標(biāo)為(4,3),直角頂點B在第四象限.
(1)如圖,若拋物線經(jīng)過A、B兩點,求拋物線的解析式.
(2)平移(1)中的拋物線,使頂點P在直線AC上并沿AC方向滑動距離為2時,試證明:平移后的拋物線與直線AC交于x軸上的同一點.
(3)在(2)的情況下,若沿AC方向任意滑動時,設(shè)拋物線與直線AC的另一交點為Q,取BC的中點N,試探究NP+BQ是否存在最小值?若存在,求出該最小值;若不存在,請說明理由.

1
2
2
【考點】二次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:1988引用:51難度:0.5
相似題
-
1.如圖1,在平面直角坐標(biāo)系中,拋物線y=-
x2+13x+3與x軸交于A,B兩點(點A在點B左側(cè)),與y軸交于點C,拋物線的頂點為點E.233
(1)判斷△ABC的形狀,并說明理由;
(2)經(jīng)過B,C兩點的直線交拋物線的對稱軸于點D,點P為直線BC上方拋物線上的一動點,當(dāng)△PCD的面積最大時,Q從點P出發(fā),先沿適當(dāng)?shù)穆窂竭\動到拋物線的對稱軸上點M處,再沿垂直于拋物線對稱軸的方向運動到y(tǒng)軸上的點N處,最后沿適當(dāng)?shù)穆窂竭\動到點A處停止.當(dāng)點Q的運動路徑最短時,求點N的坐標(biāo)及點Q經(jīng)過的最短路徑的長;
(3)如圖2,平移拋物線,使拋物線的頂點E在射線AE上移動,點E平移后的對應(yīng)點為點E′,點A的對應(yīng)點為點A′,將△AOC繞點O順時針旋轉(zhuǎn)至△A1OC1的位置,點A,C的對應(yīng)點分別為點A1,C1,且點A1恰好落在AC上,連接C1A′,C1E′,△A′C1E′是否能為等腰三角形?若能,請求出所有符合條件的點E′的坐標(biāo);若不能,請說明理由.發(fā)布:2025/6/22 21:30:2組卷:2855引用:2難度:0.1 -
2.如圖,拋物線y=-x2+bx+c的頂點為C,對稱軸為直線x=1,且經(jīng)過點A(3,-1),與y軸交于點B.
(1)求拋物線的解析式;
(2)連接OC、BC,求△OBC的面積;
(3)點P是拋物線對稱軸上一點,若△ACP為等腰三角形,請直接寫出所有點P的坐標(biāo).發(fā)布:2025/6/22 23:30:1組卷:215引用:2難度:0.5 -
3.已知拋物線L1:y=-
x2繞點(0,-0.5)旋轉(zhuǎn)180°得到拋物線L2:y=ax2+c.12
(1)求拋物線L2的解析式;
(2)如圖,將拋物線L2經(jīng)過平移得到拋物線L3:y=ax2-x-2,拋物線L3 與x軸交于點A、B,與y軸交于點C,問拋物線L3上是否存在一點P,x軸上是否存在一點Q,使得以點A、C、P、Q為頂點的四邊形為平行四邊形,若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.32
(3)如圖,將(1)中的拋物線經(jīng)過上、下平移得到拋物線L4:y=ax2+k,一扇形OMN的頂點O放置在原點O處,點N在x軸正半軸上,點M在第一象限,且∠MON=45°,點N的坐標(biāo)為(2,0),若拋物線L4與扇形OMN的邊界總有兩個公共點,求實數(shù)k的取值范圍.發(fā)布:2025/6/23 1:30:2組卷:100引用:1難度:0.3
相關(guān)試卷