(1)如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE.
①∠AEB的度數(shù)為 60°60°;
②線段AD,BE之間的數(shù)量關(guān)系為 AD=BEAD=BE;
(2)如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE,請(qǐng)判斷∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,在正方形ABCD中,CD=3,若點(diǎn)P滿足PD=1,且∠BPD=90°,請(qǐng)直接寫出點(diǎn)A到BP的距離為 5-12或5+125-12或5+12.

3
5
-
1
2
5
+
1
2
5
-
1
2
5
+
1
2
【考點(diǎn)】四邊形綜合題.
【答案】60°;AD=BE;或
5
-
1
2
5
+
1
2
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:600引用:2難度:0.1
相似題
-
1.已知菱形ABCD的邊長為1,∠ADC=60°,等邊△AEF兩邊分別交DC、CB于點(diǎn)E、F.
(1)特殊發(fā)現(xiàn):如圖1,若點(diǎn)E、F分別是邊DC、CB的中點(diǎn),求證:菱形ABCD對(duì)角線AC、BD的交點(diǎn)O即為等邊△AEF的外心;
(2)若點(diǎn)E、F始終分別在邊DC、CB上移動(dòng),記等邊△AEF的外心為P. ①猜想驗(yàn)證:如圖2,猜想△AEF的外心P落在哪一直線上,并加以證明;②拓展運(yùn)用:如圖3,當(dāng)E、F分別是邊DC、CB的中點(diǎn)時(shí),過點(diǎn)P任作一直線,分別交DA邊于點(diǎn)M,BC邊于點(diǎn)G,DC邊的延長線于點(diǎn)N,請(qǐng)你直接寫出的值.1DM+1DN發(fā)布:2025/6/23 21:30:2組卷:421引用:6難度:0.5 -
2.如圖,在矩形ABCD中,AB=6cm,BC=12cm,點(diǎn)P沿邊AB從點(diǎn)A向點(diǎn)B以1cm/s的速度移動(dòng);同時(shí),點(diǎn)Q從點(diǎn)B沿邊BC向點(diǎn)C以2cm/s的速度移動(dòng),設(shè)點(diǎn)P、Q移動(dòng)的時(shí)間為t s.問:
(1)當(dāng)t為何值時(shí)△PBQ的面積等于8cm2?
(2)當(dāng)t為何值時(shí)△DPQ是直角三角形?
(3)是否存在t的值,使△DPQ的面積最小,若存在,求此時(shí)t的值及此時(shí)的面積;若不存在,請(qǐng)說明理由.發(fā)布:2025/6/23 18:0:2組卷:117引用:1難度:0.1 -
3.如圖1,在正方形ABCD的外側(cè),作兩個(gè)等邊三角形ADE和DCF,連接AF,BE.
(1)請(qǐng)判斷:AF與BE的數(shù)量關(guān)系是
(2)如圖2,若將條件“兩個(gè)等邊三角形ADE和DCF”變?yōu)椤皟蓚€(gè)等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問中的結(jié)論是否仍然成立?請(qǐng)作出判斷并給予說明;
(3)若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問中的結(jié)論都能成立嗎?請(qǐng)直接寫出你的判斷.發(fā)布:2025/6/23 16:0:1組卷:3585引用:23難度:0.5