(1)[問題背景]如圖1,在△ABC中,AB=AC,∠BAC=α°,D為BC邊上一點(不與點B、C重合)將線段AD繞點A逆時針旋轉(zhuǎn)α°得到AE,連接EC,則∠BCE=(180-α)(180-α)°(用含α的式子表示),線段BC,DC,EC之間滿足的等量關(guān)系式為BC=CD+CEBC=CD+CE;
(2)[探究證明]如圖2,在Rt△ABC中,AB=AC,D為BC邊上一點(不與點B、C重合)將線段AD繞點A逆時針旋轉(zhuǎn)90°得到線段AE,連接DE,求證:BD2+CD2=2AD2;
(3)[拓展延伸]如圖3,在四邊形ABCF中,∠ABC=∠ACB=∠AFC=45°,BF=3,CF=1.將△ABF繞點A逆時針旋轉(zhuǎn)90°,試畫出旋轉(zhuǎn)后的圖形,并求出AF的長度.(不要求尺規(guī)作圖)
【考點】四邊形綜合題.
【答案】(180-α);BC=CD+CE
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/16 14:30:2組卷:1153引用:2難度:0.1
相似題
-
1.如圖,在菱形ABCD中,M,N分別是邊AB,BC的中點,MP⊥AB交邊CD于點P,連接NM,NP.
(1)若∠B=60°,這時點P與點C重合,則∠NMP=度;
(2)求證:NM=NP;
(3)當(dāng)△NPC為等腰三角形時,求∠B的度數(shù).發(fā)布:2025/6/19 1:30:1組卷:2881引用:6難度:0.5 -
2.已知,正方形ABCD中,∠MAN=45°,∠MAN繞點A順時針旋轉(zhuǎn),它的兩邊分別交CB,DC(或它們的延長線)于點M,N,AH⊥MN于點H.
(1)如圖①,當(dāng)∠MAN繞點A旋轉(zhuǎn)到BM=DN時,請你直接寫出AH與AB的數(shù)量關(guān)系:.
(2)如圖②,當(dāng)∠MAN繞點A旋轉(zhuǎn)到BM≠DN時,(1)中發(fā)現(xiàn)的AH與AB的數(shù)量關(guān)系還成立嗎?如果不成立請寫出理由,如果成立請證明;
(3)如圖③,已知∠MAN=45°,AH⊥MN于點H,且MH=2,NH=3,探求AH滿足的數(shù)量關(guān)系.(可利用(2)得到的結(jié)論)發(fā)布:2025/6/17 11:30:1組卷:879引用:1難度:0.3 -
3.如圖,在四邊形ABCD中,AB=AD,CB=CD,E是CD上一點,BE交AC于F,連接DF.
(1)證明:∠BAC=∠DAC,∠AFD=∠CFE;
(2)若AB∥CD,試證明四邊形ABCD是菱形;
(3)在(2)的條件下,若BE⊥CD,試證明∠EFD=∠BCD.發(fā)布:2025/6/18 8:30:2組卷:215引用:3難度:0.1
相關(guān)試卷