【初步探索】
(1)如圖1:在四邊形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分別是BC、CD上的點,且EF=BE+FD,探究圖中∠BAE、∠FAD、∠EAF之間的數(shù)量關(guān)系.
小王同學(xué)探究此問題的方法是:延長FD到點G,使DG=BE.連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是 ∠BAE+∠FAD=∠EAF∠BAE+∠FAD=∠EAF;
【靈活運用】
(2)如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E、F分別是BC、CD上的點,且EF=BE+FD,上述結(jié)論是否仍然成立,并說明理由;
【拓展延伸】
(3)如圖3,已知在四邊形ABCD中,∠ABC+∠ADC=180°,AB=AD,若點E在CB的延長線上,點F在CD的延長線上,如圖3所示,仍然滿足EF=BE+FD,請寫出∠EAF與∠DAB的數(shù)量關(guān)系,并給出證明過程.

【答案】∠BAE+∠FAD=∠EAF
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/27 8:0:9組卷:4570引用:52難度:0.1
相似題
-
1.如圖,在△ABC中,AB=AC,∠B=50°,點D在線段BC上運動(不與點BC重合),連接AD,作∠ADE=50°,DE交線段AC于點E.
(1)當(dāng)∠BDA=110°時,求出∠BAD和∠DEC的度數(shù);
(2)當(dāng)DC=AE時,△ABD和△DCE是否全等?請說明理由;
(3)在點D的運動過程中,是否存在△ADE是等腰三角形的情形?若存在,請求出此時∠BDA的度數(shù),若不存在,請說明理由.發(fā)布:2025/6/9 5:30:2組卷:22引用:1難度:0.3 -
2.【問題提出】學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對“兩個三角形滿足兩邊和其中一邊的對角對應(yīng)相等”的情形進(jìn)行研究.
【初步思考】我們不妨將問題用符號語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對∠B進(jìn)行分類,可分為“∠B是直角、鈍角、銳角”三種情況進(jìn)行探究.
【逐步探究】
(1)第一種情況:當(dāng)∠B是直角時,如圖1,根據(jù) 定理,可得△ABC≌△DEF.
(2)第二種情況:當(dāng)∠B是鈍角時,△ABC≌△DEF仍成立.請你完成證明.
已知:如圖2,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF.
(3)第三種情況:當(dāng)∠B是銳角時,△ABC和△DEF不一定全等.在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,請你用尺規(guī)在圖3中作出△DEF,使△DEF和△ABC不全等.(不寫作法,保留作圖痕跡)
【深入思考】
在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,若∠B ∠A時,則△ABC≌△DEF.發(fā)布:2025/6/9 4:0:2組卷:248引用:2難度:0.4 -
3.如圖,Rt△ABC中,∠ACB=90°,D為AB中點,點E在直線BC上(點E不與點B,C重合),連接DE,過點D作DF⊥DE交直線AC于點F,連接EF.
(1)如圖1,當(dāng)點F與點A重合時,請直接寫出線段EF與BE的數(shù)量關(guān)系;
(2)如圖2,當(dāng)點F不與點A重合時,請寫出線段AF,EF,BE之間的數(shù)量關(guān)系,并說明理由;
(3)若AC=5,BC=3,EC=1,請直接寫出線段AF的長.發(fā)布:2025/6/9 9:0:9組卷:2912引用:11難度:0.1