【背景介紹】勾股定理是幾何學(xué)中的明珠,充滿著魅力.千百年來,人們對(duì)它的證明趨之若鶩,其中有著名的數(shù)學(xué)家,也有業(yè)余數(shù)學(xué)愛好者.向常春在1994年構(gòu)造發(fā)現(xiàn)了一個(gè)新的證法.
【小試牛刀】把兩個(gè)全等的直角三角形如圖1放置,其三邊長分別為a,b,c.顯然,∠DAB=∠B=90°,AC⊥DE.請(qǐng)用a,b,c分別表示出梯形ABCD,四邊形AECD,△EBC的面積,再探究這三個(gè)圖形面積之間的關(guān)系,可得到勾股定理:S梯形ABCD=12a(a+b)12a(a+b),S△EBC=12b(a-b)12b(a-b),S四邊形AECD=12c212c2,則它們滿足的關(guān)系式為 12a(a+b)=12b(a-b)+12c212a(a+b)=12b(a-b)+12c2,經(jīng)化簡,可得到勾股定理.
【知識(shí)運(yùn)用】如圖2,河道上A,B兩點(diǎn)(看作直線上的兩點(diǎn))相距160米,C,D為兩個(gè)菜園(看作兩個(gè)點(diǎn)),AD⊥AB,BC⊥AB,垂足分別為A,B,AD=70米,BC=50米,現(xiàn)在菜農(nóng)要在AB上確定一個(gè)抽水點(diǎn)P,使得抽水點(diǎn)P到兩個(gè)菜園C,D的距離和最短,則該最短距離為 200200米.
【知識(shí)遷移】借助上面的思考過程,求代數(shù)式x2+9+(12-x)2+36的最小值(0<x<12).
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
x
2
+
9
(
12
-
x
)
2
+
36
【答案】a(a+b);b(a-b);c2;a(a+b)=b(a-b)+c2;200
1
2
1
2
1
2
1
2
1
2
1
2
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/4 8:0:9組卷:497引用:6難度:0.4
相似題
-
1.如圖,矩形ABCD中,AD=4,∠CAB=30°,點(diǎn)P是線段AC上的動(dòng)點(diǎn),點(diǎn)Q是線段CD上的動(dòng)點(diǎn),則AQ+QP的最小值是.
發(fā)布:2024/12/23 17:30:9組卷:4541引用:11難度:0.3 -
2.如圖,在矩形ABCD中,∠ACB=60°,BC=2
,F(xiàn)為線段AB上的動(dòng)點(diǎn),P為Rt△ABC內(nèi)一動(dòng)點(diǎn),且滿足∠APC=120°,若E為BC的中點(diǎn),則PF+EF的最小值是( ?。?/h2>3發(fā)布:2025/1/13 8:0:2組卷:259引用:1難度:0.5 -
3.如圖,菱形ABCD,點(diǎn)A、B、C、D均在坐標(biāo)軸上.∠ABC=120°,點(diǎn)A(-3,0),點(diǎn)E是CD的中點(diǎn),點(diǎn)P是OC上的一動(dòng)點(diǎn),則PD+PE的最小值是( )
發(fā)布:2024/12/23 19:30:2組卷:1109引用:8難度:0.5
把好題分享給你的好友吧~~