試卷征集
加入會員
操作視頻
已知函數(shù)y=(m+1)x2-(m-1)x+m-1.
(1)若不等式(m+1)x2-(m-1)x+m-1<1的解集為R,求m的取值范圍;
(2)解關于x的不等式(m+1)x2-2mx+m-1≥0;
(3)若不等式(m+1)x2-(m-1)x+m-1≥0對一切
x
{
x
|
-
1
2
x
1
2
}
恒成立,求m的取值范圍.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/9/22 10:0:8組卷:70引用:5難度:0.4
相似題
  • 1.已知函數(shù)
    f
    x
    =
    x
    2
    -
    2
    ax
    +
    2
    a
    ,
    x
    1
    |
    x
    -
    3
    |
    +
    |
    x
    |
    -
    a
    ,
    x
    1
    ,若關于x的不等式f(x)≥0恒成立,則實數(shù)a的取值范圍是( ?。?/div>
    發(fā)布:2024/10/23 6:0:3組卷:22引用:2難度:0.5
  • 2.已知函數(shù)
    f
    x
    =
    6
    x
    +
    b
    x
    2
    +
    a
    為定義在R上的奇函數(shù),且
    f
    1
    =
    3
    2

    (1)求函數(shù)f(x)的解析式;
    (2)若?x∈[1,3],使得不等式|f(x)-m|≤1成立,求實數(shù)m的取值范圍;
    (3)若?n∈[0,1],?t∈(0,+∞),使得不等式
    f
    t
    +
    nf
    t
    3
    -
    s
    0
    成立,求實數(shù)s的最小值.
    發(fā)布:2024/10/23 6:0:3組卷:40引用:2難度:0.5
  • 3.已知函數(shù)f(x),g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),且f(x)+g(x)=x2-x+1.
    (1)求函數(shù)f(x)與g(x)的解析式;
    (2)設函數(shù)G(x)=f(x)+a|g(x)+1|,若對任意實數(shù)x,
    G
    x
    3
    2
    恒成立,求實數(shù)a的取值范圍.
    發(fā)布:2024/10/23 3:0:1組卷:168引用:3難度:0.4
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應用名稱:菁優(yōu)網(wǎng) | 應用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務條款廣播電視節(jié)目制作經(jīng)營許可證出版物經(jīng)營許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正