如圖,已知二次函數(shù)y=x2+bx+c(b,c為常數(shù))的圖象經(jīng)過點(diǎn)A(3,-2),點(diǎn)C(0,-5),頂點(diǎn)為點(diǎn)M,過點(diǎn)A作AB∥x軸,交y軸于點(diǎn)D,交二次函數(shù)y=x2+bx+c的圖象于點(diǎn)B,連接BC.
(1)求該二次函數(shù)的表達(dá)式及點(diǎn)M的坐標(biāo);
(2)若將該二次函數(shù)圖象向上平移m(m>0)個(gè)單位,使平移后得到的二次函數(shù)圖象的頂點(diǎn)落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍;
(3)若E為線段AB上一點(diǎn),且BE:EA=3:1,P為直線AC上一點(diǎn),在拋物線上是否存在一點(diǎn)Q,使以B、P、E、Q為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)Q的橫坐標(biāo);若不存在,請(qǐng)說明理由.
【考點(diǎn)】二次函數(shù)綜合題.
【答案】(1)y=x2-2x-5,M(1,-6);
(2)2<m<4;
(3)存在,(,)或(,)或(,)或(,).
(2)2<m<4;
(3)存在,(
3
-
29
2
3
-
29
2
3
+
29
2
3
+
29
2
3
+
21
2
21
-
1
2
3
-
21
2
-
1
-
21
2
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:193引用:2難度:0.3
相似題
-
1.如圖,在平面直角坐標(biāo)系中,四邊形OABC為菱形,點(diǎn)C的坐標(biāo)為(4,0),∠AOC=60°,垂直于x軸的直線l從y軸出發(fā),沿x軸正方向以每秒1個(gè)單位長度的速度運(yùn)動(dòng),設(shè)直線l與菱形OABC的兩邊分別交于點(diǎn)M、N(點(diǎn)M在點(diǎn)N的上方).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)設(shè)△OMN的面積為S,直線l運(yùn)動(dòng)時(shí)間為t秒(0≤t≤6),試求S與t的函數(shù)表達(dá)式;
(3)在題(2)的條件下,t為何值時(shí),S的面積最大?最大面積是多少?發(fā)布:2025/6/9 17:0:1組卷:570引用:26難度:0.1 -
2.如圖,直線l:y=-3x+3與x軸、y軸分別相交于A、B兩點(diǎn),拋物線y=ax2-2ax+a+4(a<0)經(jīng)過點(diǎn)B.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)已知點(diǎn)M是拋物線上的一個(gè)動(dòng)點(diǎn),并且點(diǎn)M在第一象限內(nèi),連接AM、BM,設(shè)點(diǎn)M的橫坐標(biāo)為m,△ABM的面積為S,求S與m的函數(shù)表達(dá)式,并求出S的最大值;
(3)在(2)的條件下,當(dāng)S取得最大值時(shí),動(dòng)點(diǎn)M相應(yīng)的位置記為點(diǎn)M′.
①寫出點(diǎn)M′的坐標(biāo);
②將直線l繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)得到直線l′,當(dāng)直線l′與直線AM′重合時(shí)停止旋轉(zhuǎn),在旋轉(zhuǎn)過程中,直線l′與線段BM′交于點(diǎn)C,設(shè)點(diǎn)B、M′到直線l′的距離分別為d1、d2,當(dāng)d1+d2最大時(shí),求直線l′旋轉(zhuǎn)的角度(即∠BAC的度數(shù)).發(fā)布:2025/6/9 17:0:1組卷:5423引用:12難度:0.1 -
3.已知拋物線y=3ax2+2bx+c,
(1)若a=b=1,c=-1,求該拋物線與x軸交點(diǎn)的坐標(biāo);
(2)若a=b=1,且當(dāng)-1<x<1時(shí),拋物線與x軸有且只有一個(gè)交點(diǎn).求c的取值范圍;
(3)若a+b+c=0,且x1=0時(shí),對(duì)應(yīng)的y1>0;x2=1時(shí),對(duì)應(yīng)的y2>0,試判斷當(dāng)0<x<1時(shí),拋物線與x軸是否有交點(diǎn)?若有,請(qǐng)證明你的結(jié)論;若沒有,闡述理由.發(fā)布:2025/6/9 16:0:2組卷:365引用:2難度:0.1