如下,設(shè)A是由n×n個有理數(shù)組成的n行n列的數(shù)表,其中aij(i,j=1,2,3,…,n)表示位于第i行第j列的數(shù),且aij取值為1或-1.對于數(shù)表A給出如下定義:記xi為數(shù)表A的第i行各數(shù)之積,yj為數(shù)表A的第j列各數(shù)之積.
令S=(x1+x2+…+xn)+(y1+y2+…+yn),將S稱為數(shù)表A的“積和”.
a11 | a12 | … | a1n |
a21 | a22 | … | a2n |
… | … | … | … |
an1 | an2 | … | ann |
1 | 1 | -1 | -1 |
1 | -1 | 1 | 1 |
1 | -1 | -1 | 1 |
-1 | -1 | 1 | 1 |
(3)當(dāng)n=10時,直接寫出數(shù)表A的“積和”S的所有可能的取值.
【考點(diǎn)】規(guī)律型:數(shù)字的變化類.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/10 1:0:2組卷:292引用:3難度:0.6
相似題
-
1.下列排列的每一列數(shù),研究它的排列有什么規(guī)律?并填出空格上的數(shù).
(1)1,-2,1,-2,1,-2,,,,…
(2)-2,4,-6,8,-10,,,…
(3)1,0,-1,1,0,-1,,,.發(fā)布:2025/6/25 7:30:2組卷:49引用:2難度:0.3 -
2.在求1+2+22+23+24+25+26的值時,小明發(fā)現(xiàn):從第二個加數(shù)起每一個加數(shù)都是前一個加數(shù)的2倍,于是他設(shè):S=1+2+22+23+24+25+26①然后在①式的兩邊都乘以2,得:2S=2+22+23+24+25+26+27 ②;②-①得2S-S=27-1,S=27-1,即1+2+22+23+24+25+26=27-1.
(1)求1+3+32+33+34+35+36的值;
(2)求1+a+a2+a3+…+a2016(a≠0且a≠1)的值.發(fā)布:2025/6/25 7:30:2組卷:106引用:2難度:0.3 -
3.(1)計(jì)算:1-2+3-4+5-6…+99-100;
(2)計(jì)算:2-4-6+8+10-12-14+16+18-20-22+24+…+2010-2012.發(fā)布:2025/6/25 7:30:2組卷:46引用:1難度:0.6