閱讀材料,要將多項(xiàng)式am+an+bm+bn分解因式,可以先把它的前兩項(xiàng)分成一組,提出公因式a,再把它的后兩項(xiàng)分成一組,提出公因式b,從而得到:am+am+bm+bn=a(m+n)+b(m+n),這時(shí)a(m+n)+b(m+n)中又有公因式(m+n),于是可以提出(m+n),從而得到(m+n)(a+b),因此有am+an+bm+bn=a(m+n)+b(m+n)=(m+n)(a+b),這種方法稱為分組法.請(qǐng)回答下列問題:
(1)嘗試填空:2x-18+xy-9y= (x-9)(y+2)(x-9)(y+2);
(2)解決問題:因式分解ac-bc+ab-a2;
(3)拓展應(yīng)用:已知三角形的三邊長(zhǎng)分別是a,b,c,且滿足a2+2b2+c2-2ab-2bc=0試判斷這個(gè)三角形的形狀,并說明理由.
【考點(diǎn)】因式分解的應(yīng)用;因式分解的意義.
【答案】(x-9)(y+2)
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/29 8:0:10組卷:171引用:1難度:0.6
相似題
-
1.閱讀下列題目的解題過程:
已知a、b、c為△ABC的三邊長(zhǎng),且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問:(1)上述解題過程,從哪一步開始出現(xiàn)錯(cuò)誤?請(qǐng)寫出該步的代號(hào):;
(2)錯(cuò)誤的原因?yàn)椋?!--BA-->;
(3)本題正確的結(jié)論為:.發(fā)布:2024/12/23 18:0:1組卷:2501引用:25難度:0.6 -
2.若a是整數(shù),則a2+a一定能被下列哪個(gè)數(shù)整除( )
發(fā)布:2024/12/24 6:30:3組卷:385引用:7難度:0.6 -
3.閱讀理解:
能被7(或11或13)整除的特征:如果一個(gè)自然數(shù)末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是7(或11或13)的倍數(shù),則這個(gè)數(shù)就能被7(或11或13)整除.
如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
(1)用材料中的方法驗(yàn)證67822615是7的倍數(shù)(寫明驗(yàn)證過程);
(2)若對(duì)任意一個(gè)七位數(shù),末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是11的倍數(shù),證明這個(gè)七位數(shù)一定能被11整除.發(fā)布:2025/1/5 8:0:1組卷:121引用:3難度:0.4
把好題分享給你的好友吧~~