對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點.已知f(x)=ax2+(b+1)x+b-1(a≠0).
(1)當a=1,b=-2時,求函數(shù)f(x)的不動點;
(2)若對任意實數(shù)b,函數(shù)f(x)恒有兩個相異的不動點,求a的范圍;
(3)在(2)的條件下,若y=f(x)圖象上A、B兩點的橫坐標是函數(shù)f(x)的不動點,且A、B兩點關(guān)于直線y=kx+12a2+1對稱,求b的最小值.
1
2
a
2
+
1
【考點】函數(shù)與方程的綜合運用.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:658引用:28難度:0.1