請認(rèn)真觀察圖形,解答下列問題:
(1)根據(jù)圖1中條件,試用兩種不同方法表示兩個陰影圖形的面積的和.
方法1:a2+b2a2+b2;方法2:(a+b)2-2ab(a+b)2-2ab.
(2)從中你能發(fā)現(xiàn)什么結(jié)論?請用等式表示出來;
(3)利用(2)中結(jié)論解決下面的問題:
如圖2,兩個形狀大小相同的長方形ABCD和長方形AEFG,點E在AB邊上,AB=a,BC=b,且a>b>0.分別連接BD,DF,BF,當(dāng)a+b=10,ab=20.求圖中陰影部分的面積.
【考點】完全平方公式的幾何背景.
【答案】a2+b2;(a+b)2-2ab
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:149引用:1難度:0.6
相似題
-
1.如圖,長方形ABCD的周長是12cm,分別以AB,AD為邊向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面積之和為20cm2,那么長方形ABCD的面積是( ?。?/h2>
發(fā)布:2025/6/8 22:30:1組卷:499引用:5難度:0.7 -
2.如圖,現(xiàn)有一塊長為(a+4b)米,寬為(a+b)米的長方形地塊,規(guī)劃將陰影部分進(jìn)行綠化,中間預(yù)留部分是邊長為(a-b)米的正方形.
(1)求綠化的面積S(用含a,b的代數(shù)式表示,并化簡);
(2)若a=3,b=2,綠化成本為100元/平方米,則完成綠化共需要多少元?發(fā)布:2025/6/8 18:30:1組卷:150引用:3難度:0.5 -
3.【探究】如圖①,從邊長為a的大正方形中剪掉一個邊長為b的小正方形,將陰影部分沿虛線剪開,拼成圖②的長方形.
(1)請你分別表示出這兩個圖形中陰影部分的面積;
(2)比較兩圖的陰影部分面積,可以得到乘法公式:(用字母表示);
【應(yīng)用】請應(yīng)用這個公式完成下列各題:
計算:
(2a+b-c)(2a-b+c).發(fā)布:2025/6/8 17:30:2組卷:74引用:1難度:0.6