設(shè)一元二次方程x2+px+q=0(p,q為常數(shù))的兩根為x1,x2,則x2+px+q=(x-x1)(x-x2),即x2+px+q=x2-(x1+x2)x+x1x2,比較兩邊x的同次冪的系數(shù),得x1+x2=-p① x1x2=q②
這兩個(gè)式子揭示了一元二次方程的根與系數(shù)之間的關(guān)系,且關(guān)系式①②中,x1,x2的地位是對(duì)等的(即具有對(duì)稱性,如將x1,x2互換,原關(guān)系式不變).類似地,設(shè)一元三次方程x3+px2+qx+r=0(p,q,r為常數(shù))的3個(gè)根為x1,x2,x3,則x3+px2+qx+r=(x-x1)(x-x2)(x-x3).由此可得方程x3+px2+qx+r=0的根x1,x2,x3與系數(shù)p,q,r之間存在一組對(duì)稱關(guān)系式:x1+x2+x3=(??) x1x2+x2x3+x3x1=(??) x1x2x3=(??)
-p-p,qq,-r-r.
x 1 + x 2 = - p ① |
x 1 x 2 = q ② |
x 1 + x 2 + x 3 = ( ?? ) |
x 1 x 2 + x 2 x 3 + x 3 x 1 = ( ?? ) |
x 1 x 2 x 3 = ( ?? ) |
【考點(diǎn)】根與系數(shù)的關(guān)系.
【答案】-p;q;-r
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/26 19:30:1組卷:47引用:3難度:0.7
相似題
-
1.關(guān)于x的方程x2+2(m-1)x+m2-m=0有兩個(gè)實(shí)數(shù)根α,β,且α2+β2=12,那么m的值為( ?。?/h2>
發(fā)布:2025/6/25 4:30:1組卷:7046引用:33難度:0.6 -
2.Rt△ABC的兩直角邊a、b恰好是方程2x2-8x+7=0的兩根,則該三角形的斜邊c長為
發(fā)布:2025/6/24 19:0:1組卷:18引用:1難度:0.7 -
3.已知x=1是方程x2=ax+2的一個(gè)根,則此方程的另一個(gè)根為( )
發(fā)布:2025/6/24 19:30:2組卷:42引用:1難度:0.9