如圖,在Rt△ABC中,∠ACB=90°,以BC為半徑作⊙B,交AB于點(diǎn)D,交AB的延長(zhǎng)線于點(diǎn)E,連接CD、CE.
(1)求證:△ACD∽△AEC;
(2)當(dāng)ACBC=43時(shí),求tanE;
(3)若AD=4,AC=43,求△ACE的面積.
AC
BC
4
3
3
【考點(diǎn)】圓的綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:169引用:2難度:0.3
相似題
-
1.已知:四邊形ABCD內(nèi)接于O,AC為⊙O的直徑,E為
中點(diǎn),連接AE、CE.?AB
(1)如圖1,求證:2∠ACE+∠BAC=90°;
(2)如圖2,F(xiàn)為中點(diǎn),弦AF與CE交于點(diǎn)G,若G為EC中點(diǎn),求證:EC=2AE;?BC
(3)如圖3,在(2)的條件下,連接BG、DG,DG交AC于M,點(diǎn)N為MC上的點(diǎn),若∠AGD=90°,∠AFB=2∠MGN,MN=2,求線段BG的長(zhǎng).發(fā)布:2025/5/30 12:0:2組卷:68引用:1難度:0.3 -
2.如圖1,四邊形ABCD內(nèi)接于⊙O,AB=AC,AC⊥BD,垂足為點(diǎn)E.
(1)求證:∠BAC=2∠CAD;
(2)如圖2,點(diǎn)F在BD的延長(zhǎng)線上,且DF=DC,連接CF.求證:CF=CB;
(3)如圖3,在(2)的條件下,連接AF,當(dāng)AF=20,CF=時(shí),求⊙O的半徑長(zhǎng).85發(fā)布:2025/5/30 11:0:1組卷:314引用:1難度:0.4 -
3.閱讀下列材料,并回答問題.
[材料]自從《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2022年版)》實(shí)施以來(lái),九年級(jí)的龍老師增加了一個(gè)習(xí)慣,就是在每個(gè)新章節(jié)備課時(shí)都會(huì)查閱新課標(biāo),了解該章知識(shí)的新舊課標(biāo)的變化,并在上課時(shí)告訴學(xué)生.他通過(guò)查閱新課標(biāo)獲悉:切線長(zhǎng)定理由“選學(xué)”改為“必學(xué)”,并新增“會(huì)過(guò)圓外的一個(gè)點(diǎn)作圓的切線”.在學(xué)習(xí)完《切線的性質(zhì)與判定》后,龍老師布置了一道課外思考題:“已知:如圖,⊙O及⊙O外一點(diǎn)P.求作:直線PM,使PM與⊙O相切于點(diǎn)M”.
班上小巖同學(xué)所在的學(xué)習(xí)小組經(jīng)過(guò)探索,給出了如下的一種作圖方法:
(1)連接OP,以O(shè)為圓心,OP長(zhǎng)為半徑作大圓O;
(2)若OP交小圓O于點(diǎn)N,過(guò)點(diǎn)N作小圓O的切線與大圓O交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的上方);
(3)連接AO交小圓O于M,連接PM,則PM是小圓O的切線.
[問題]
(1)請(qǐng)問小巖同學(xué)所在的學(xué)習(xí)小組提供的作圖方法是否正確?請(qǐng)你按照步驟完成作圖(尺規(guī)作圖,保留作圖痕跡),并說(shuō)明理由.
(2)延長(zhǎng)AO交大圓O于C,連接CN,若OA=2,OM=1,求CN的長(zhǎng).發(fā)布:2025/5/30 11:30:2組卷:260引用:1難度:0.4