閱讀下列材料,并回答問題.
[材料]自從《義務(wù)教育數(shù)學(xué)課程標準(2022年版)》實施以來,九年級的龍老師增加了一個習(xí)慣,就是在每個新章節(jié)備課時都會查閱新課標,了解該章知識的新舊課標的變化,并在上課時告訴學(xué)生.他通過查閱新課標獲悉:切線長定理由“選學(xué)”改為“必學(xué)”,并新增“會過圓外的一個點作圓的切線”.在學(xué)習(xí)完《切線的性質(zhì)與判定》后,龍老師布置了一道課外思考題:“已知:如圖,⊙O及⊙O外一點P.求作:直線PM,使PM與⊙O相切于點M”.
班上小巖同學(xué)所在的學(xué)習(xí)小組經(jīng)過探索,給出了如下的一種作圖方法:
(1)連接OP,以O(shè)為圓心,OP長為半徑作大圓O;
(2)若OP交小圓O于點N,過點N作小圓O的切線與大圓O交于A,B兩點(點A在點B的上方);
(3)連接AO交小圓O于M,連接PM,則PM是小圓O的切線.
[問題]
(1)請問小巖同學(xué)所在的學(xué)習(xí)小組提供的作圖方法是否正確?請你按照步驟完成作圖(尺規(guī)作圖,保留作圖痕跡),并說明理由.
(2)延長AO交大圓O于C,連接CN,若OA=2,OM=1,求CN的長.
【考點】圓的綜合題.
【答案】(1)小巖同學(xué)所在的學(xué)習(xí)小組提供的作圖方法正確.理由見解析;(2).
7
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/30 11:30:2組卷:260引用:1難度:0.4
相似題
-
1.如圖⊙O半徑為r,銳角△ABC內(nèi)接于⊙O,連AO并延長交BC于D,過點D作DE⊥AC于E.
(1)如圖1,求證:∠DAB=∠CDE;
(2)如圖1,若CD=OA,AB=6,求DE的長;
(3)如圖2,當∠DAC=2∠DAB時,BD=5,DC=6,求r的值;
(4)如圖3,若AE=AB=BD=1,直接寫出AD+DE的值(用含r的代數(shù)式表示).發(fā)布:2025/5/31 2:0:7組卷:428引用:1難度:0.2 -
2.如圖,平面直角坐標系中,矩形ABCD,其中A(1,0)、B(4,0)、C(4,2)、D(1,2),定義如下:若點P關(guān)于直線l的對稱點P'在矩形ABCD的邊上,則稱點P為矩形ABCD關(guān)于直線l的“關(guān)聯(lián)點”,
(1)已知點P1(-1,2)、點P2(-2,1)、點P3(-4,1),點P2(-3,-1)中是矩形ABCD關(guān)于y軸的關(guān)聯(lián)點的是 ;
(2)⊙O的圓心O(-,1)半徑為72,若⊙O上至少存在一個點是矩形ABCD關(guān)于直線x=t的關(guān)聯(lián)點,求t的取值范圍;32
(3)⊙O的圓心O(m,1)(m<0)半徑為r,若存在t值使⊙O上恰好存在四個點是矩形ABCD關(guān)于直線x=t的關(guān)聯(lián)點,寫出r的取值范圍,并寫出當r取最小值時t的取值范圍(用含m的式子表示).發(fā)布:2025/5/31 11:0:1組卷:360引用:1難度:0.2 -
3.閱讀材料:如圖,△ABC的周長為l,面積為S,內(nèi)切圓⊙O的半徑為r,探究r與S,l之間的關(guān)系.
解:連接OA、OB、OC.
∵S△AOB=AB?r,S△OBC=12BC?r,S△OCA=12CA?r,12
∴S=AB?r+12BC?r+12CA?r=12l?r,12
∴r=2Sl
解決問題:
(1)利用探究的結(jié)論,計算邊長分別為5,12,13的三角形內(nèi)切圓半徑.
(2)如圖,若四邊形ABCD存在內(nèi)切圓(與各邊都相切的圓),且面積為S,各邊長分別為a,b,c,d,試推導(dǎo)四邊形的內(nèi)切圓半徑公式.
(3)若一個n邊形(n為不小于3的整數(shù))存在內(nèi)切圓,且面積為S,各邊長分別為a1,a2,a3,a4,…,an,合理猜想其內(nèi)切圓半徑公式(不需說明理由).發(fā)布:2025/5/31 13:0:2組卷:90引用:2難度:0.5