如圖,在Rt△ABC中,∠B=90°,BC=53,∠C=30°.點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒2個單位長的速度向點(diǎn)A勻速運(yùn)動,同時點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒1個單位長的速度向點(diǎn)B勻速運(yùn)動,當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)D、E運(yùn)動的時間是t秒(t>0).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE、EF.
(1)求AB,AC的長;
(2)求證:AE=DF;
(3)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.
(4)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.
3
【考點(diǎn)】四邊形綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/7 18:30:1組卷:843引用:4難度:0.3
相似題
-
1.在人教版八年級上冊數(shù)學(xué)教材P53的數(shù)學(xué)活動中有這樣一段描述:在四邊形ABCD中,AD=CD,AB=CB,我們把這種兩組鄰邊分別相等的四邊形叫做“箏形”,如圖(1).
(1)知識應(yīng)用:小風(fēng)想要做一個如圖(2)所示的風(fēng)箏,他想先固定中間的“十字架”,再確定四周,從數(shù)學(xué)的角度看,小風(fēng)確定“十字架”時應(yīng)滿足什么要求?并證明你的結(jié)論.
(2)知識拓展:如圖(3)所示,如果D為△ABC內(nèi)一點(diǎn),BD平分∠ABC,且AD=CD,試證明:AB=CB.發(fā)布:2025/6/9 0:30:2組卷:72引用:1難度:0.2 -
2.矩形ABCD中,∠ACB=30°,△BEF中,∠BEF=90°,∠BFE=30°,BF=
AC,連接FD,點(diǎn)G是FD中點(diǎn),將△BEF繞點(diǎn)B順時針旋轉(zhuǎn)α(0°<α<360°).12
(1)如圖1,若點(diǎn)B恰好在線段DF延長線上,AB=4,連接EG,求EG的長度;
(2)如圖2,若點(diǎn)E恰好落在線段FD上,連接AG,證明:2(GD-GA)=DC;3
(3)如圖3,若點(diǎn)E恰好落在線段AB延長線上,點(diǎn)M是線段AD上一點(diǎn),3AM=DM,N是平面內(nèi)一點(diǎn),滿足∠MND=∠FDC,已知AB=4,當(dāng)△DMN是等腰三角形時,直接寫出線段MN的長度.發(fā)布:2025/6/9 1:0:1組卷:118引用:1難度:0.1 -
3.問題情境:數(shù)學(xué)活動課上,老師組織同學(xué)們以“正方形”為主題開展數(shù)學(xué)活動.
動手實(shí)踐:
(1)如圖①,已知正方形紙片ABCD,勤奮小組將正方形紙片沿過點(diǎn)A的直線折疊,使點(diǎn)B落在正方形ABCD的內(nèi)部,點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)M,折痕為AE,再將紙片沿過點(diǎn)A的直線折疊,使AD與AM重合,折痕為AF,易知點(diǎn)E、M、F共線,則∠EAF=度.
拓展應(yīng)用:
(2)如圖②,騰飛小組在圖①的基礎(chǔ)上進(jìn)行如下操作:將正方形紙片沿EF繼續(xù)折疊,使得點(diǎn)C的對應(yīng)點(diǎn)為點(diǎn)N,他們發(fā)現(xiàn),當(dāng)點(diǎn)E的位置不同時,點(diǎn)N的位置也不同,當(dāng)點(diǎn)E在BC邊的某一位置時,點(diǎn)N恰好落在折痕AE上.
①則∠CFE=度.
②設(shè)AM與NF的交點(diǎn)為點(diǎn)P,運(yùn)用(1)、(2)操作所得結(jié)論,求證:△ANP≌△FNE.
解決問題:
(3)在圖②中,若AB=3,請直接寫出線段MP的長.發(fā)布:2025/6/9 2:0:7組卷:1098引用:9難度:0.3