如圖,由四個(gè)全等的直角三角形拼成的圖形,設(shè)CE=a,HG=b,則斜邊BD的長(zhǎng)是( )
【考點(diǎn)】勾股定理的證明.
【答案】C
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/5 21:30:1組卷:2346引用:8難度:0.7
相似題
-
1.如圖是一個(gè)“趙爽弦圖”,它是由四個(gè)全等的直角三角形圍成一個(gè)大正方形,中空的部分也是一個(gè)小正方形,若大正方形的邊長(zhǎng)為7,小正方形的邊長(zhǎng)為3,直角三角形的兩直角邊分別為a,b,則ab的值為 .
發(fā)布:2025/6/7 11:0:1組卷:255引用:5難度:0.7 -
2.綜合與實(shí)踐:
問(wèn)題情境
學(xué)過(guò)幾何的人都知道勾股定理,它是幾何中一個(gè)比較重要的定理,應(yīng)用十分廣泛.迄今為止,關(guān)于勾股定理的證明方法已有400多種.在學(xué)習(xí)了《勾股定理》和《實(shí)數(shù)》后,某班同學(xué)以“已知三角形三邊的長(zhǎng)度,求三角形面積”為主題開(kāi)展了數(shù)學(xué)活動(dòng).
操作發(fā)現(xiàn)
如圖1是6×6的正方形網(wǎng)格,每個(gè)小正方形的邊長(zhǎng)均為1,每個(gè)小正方形的頂點(diǎn)稱(chēng)為格點(diǎn).在圖1中畫(huà)出△ABC,其頂點(diǎn)A,B,C都是格點(diǎn),同時(shí)構(gòu)造正方形BDEF,使它的頂點(diǎn)都在格點(diǎn)上,且它的邊DE,EF分別經(jīng)過(guò)點(diǎn)C,A,他們借助此圖求出了△ABC的面積.
(1)在圖1中,所畫(huà)出的△ABC的三邊長(zhǎng)分別是AB=,BC=,AC=;△ABC的面積為 .
實(shí)踐探究
(2)在圖2所示的正方形網(wǎng)格中畫(huà)出△DEF(頂點(diǎn)都在格點(diǎn)上),使DE=,DF=5,EF=13,并寫(xiě)出△DEF的面積.20
繼續(xù)探究
(3)若△ABC中有兩邊的長(zhǎng)分別為a,2a(a>0),且△ABC的面積為2a2,試運(yùn)用構(gòu)圖法在圖3的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為a)中畫(huà)出所有符合題意的△ABC(全等的三角形視為同一種情況),并求出它的第三條邊長(zhǎng)填寫(xiě)在橫線上 .10發(fā)布:2025/6/7 8:0:1組卷:1062引用:7難度:0.4 -
3.我國(guó)漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱(chēng)其為“趙爽弦圖”(如圖1所示).圖2由弦圖變化得到,它是由八個(gè)全等的直角三角形拼接而成的記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,若EF=4,則S1+S2+S3的值是( ?。?/h2>
發(fā)布:2025/6/7 4:0:1組卷:837引用:8難度:0.5