在直角坐標(biāo)系中,設(shè)函數(shù)y=ax2+2bx+3(a,b是常數(shù),a≠0).
(1)已知點(diǎn)A(-1,0),B(0,2),C(2,3),若該函數(shù)圖象只經(jīng)過(guò)其中兩點(diǎn),求函數(shù)表達(dá)式;
(2)寫(xiě)出一組a,b的值,使函數(shù)y=ax2+2bx+2的圖象與x軸只有1個(gè)交點(diǎn),并說(shuō)明理由;
(3)已知a=b=-1,點(diǎn)M(x1,y1),N(x2,y2)(x1≠x2)在函數(shù)y=ax2+2bx+3圖象上,且兩點(diǎn)均在x軸上方,若x1+x2=-1,求y1+y2的取值范圍.
【考點(diǎn)】二次函數(shù)綜合題.
【答案】(1)y=-x2+2x+3.
(2)見(jiàn)解析.
(3)3<y1+y2<.
(2)見(jiàn)解析.
(3)3<y1+y2<
15
2
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:447引用:1難度:0.4
相似題
-
1.已知:在平面直角坐標(biāo)系xOy中,二次函數(shù)y=ax2+bx-3(a>0)的圖象與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè),與y軸交于點(diǎn)C,且OC=OB=3OA.
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)點(diǎn)D是點(diǎn)C關(guān)于此拋物線對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn),直線AD,BC交于點(diǎn)P,試判斷直線AD,BC是否垂直,并證明你的結(jié)論;
(3)在(2)的條件下,若點(diǎn)M,N分別是射線PC,PD上的點(diǎn),問(wèn):是否存在這樣的點(diǎn)M,N的坐標(biāo),使得以點(diǎn)P,M,N為頂點(diǎn)的三角形與△ACP全等?若存在,請(qǐng)求出點(diǎn)M,N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.發(fā)布:2025/6/17 11:30:1組卷:129引用:1難度:0.4 -
2.如圖,直線y1=-x+3與x軸于交于點(diǎn)B,與y軸交于點(diǎn)C.拋物線y2=-x2+bx+c經(jīng)過(guò)B、C兩點(diǎn),并與x軸另一個(gè)交點(diǎn)為A.
(1)求拋物線y2的解析式;
(2)若點(diǎn)M在拋物線上,且S△MOC=4S△AOC,求點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)P是線段BC上一動(dòng)點(diǎn),過(guò)P作PQ⊥x軸,交拋物線于點(diǎn)Q,求線段PQ長(zhǎng)度的最大值.發(fā)布:2025/6/17 2:0:1組卷:1010引用:3難度:0.3 -
3.如圖,已知拋物線y=ax2+bx+c過(guò)點(diǎn)A(6,0),B(-2,0),C(0,-3).
(1)求此拋物線的解析式;
(2)若點(diǎn)H是該拋物線第四象限的任意一點(diǎn),求四邊形OCHA的最大面積;
(3)若點(diǎn)Q在x軸上,點(diǎn)G為該拋物線的頂點(diǎn),且∠QGA=45°,求點(diǎn)Q的坐標(biāo).發(fā)布:2025/6/16 23:0:1組卷:401引用:5難度:0.5
相關(guān)試卷