已知f(x)=a(x-lnx),g(x)=exx+2e3.
(1)當(dāng)a=1時,求f(x)的最小值;
(2)若g(x)≥f(x)在(0,+∞)上恒成立,求a的取值范圍.
g
(
x
)
=
e
x
x
+
2
e
3
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/24 11:0:12組卷:25引用:3難度:0.5
相似題
-
1.設(shè)f(x)=(x+1)ln(x+1),g(x)=ax2+x(a∈R).
(1)求f(x)的最小值;
(2)若?x≥0,f(x)≤g(x),求實數(shù)a的取值范圍.發(fā)布:2024/10/16 18:0:2組卷:97引用:5難度:0.3 -
2.已知兩數(shù)f(x)=2|sinx|+cosx,則f(x)的最小值為( ?。?/h2>
發(fā)布:2024/11/8 0:0:1組卷:134引用:3難度:0.6 -
3.已知函數(shù)f(x)=2ex-sin2x.
(1)當(dāng)x≥0時,求函數(shù)f(x)的最小值;
(2)若對于,不等式4xex+xcos2x-ax2-5x≥0恒成立,求實數(shù)a的取值范圍.?x∈(-π12,+∞)發(fā)布:2024/10/11 15:0:1組卷:38引用:2難度:0.5