已知數(shù)列{an}中,a1=1,anan+1=2n,令bn=a2n.
(1)求數(shù)列{bn}的通項公式;
(2)若cn=bn,n為偶數(shù), 2log2bn+log2bn+2,n為奇數(shù),
求數(shù)列{cn}的前23項和.
a
n
a
n
+
1
=
2
n
c
n
=
b n , n 為偶數(shù) , |
2 log 2 b n + log 2 b n + 2 , n 為奇數(shù) , |
【考點(diǎn)】數(shù)列求和的其他方法.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:439引用:2難度:0.6
相似題
-
1.已知{an}為單調(diào)遞增的等比數(shù)列,bn=
,記Sn,Tn分別是數(shù)列{an},{bn}的前n項和,S3=7,T3=1.an-2n,n為奇數(shù)2an,n為偶數(shù)
(1)求{an}的通項公式;
(2)證明:當(dāng)n>5時,Tn>Sn.發(fā)布:2024/10/9 11:0:2組卷:44引用:3難度:0.5 -
2.任取一個正整數(shù),若是奇數(shù),就將該數(shù)乘3再加上1;若是偶數(shù),就將該數(shù)除以2.反復(fù)進(jìn)行上述兩種運(yùn)算,經(jīng)過有限次步驟后,必進(jìn)入循環(huán)圈1→4→2→1.這就是數(shù)學(xué)史上著名的“冰雹猜想”(又稱“角谷猜想”等).如取正整數(shù)m=6,根據(jù)上述運(yùn)算法則得出6→3→10→5→16→8→4→2→1,共需經(jīng)過8個步驟變成1(簡稱為8步“雹程”).現(xiàn)給出冰雹猜想的遞推關(guān)系如下:已知數(shù)列{an}滿足:a1=m(m為正整數(shù)),
當(dāng)m=3時,a1+a2+a3+…+a100=.an+1=an2,當(dāng)an為偶數(shù)時,3an+1,當(dāng)an為奇數(shù)時.發(fā)布:2024/10/26 17:0:2組卷:71引用:3難度:0.5 -
3.數(shù)列{an}滿足a1=0,a2=1,an=
,則數(shù)列{an}的前10項和為( ?。?/h2>2+an-2,n≥3,n為奇數(shù)2an-2,n≥3,n為偶數(shù)發(fā)布:2024/11/10 4:0:2組卷:187引用:4難度:0.7
把好題分享給你的好友吧~~