試卷征集
加入會員
操作視頻

雙曲線
x
2
-
y
2
b
2
=
1
b
0
的左、右焦點分別為F1、F2,直線l過F2且與雙曲線交于A、B兩點.
(1)若l的傾斜角為
π
2
,△F1AB是等邊三角形,求雙曲線的漸近線方程;
(2)若點P為雙曲線上任一點,求證點P到雙曲線兩漸近線的距離之積為定值,并求出該定值(用含有b的代數(shù)式表示);
(3)設(shè)
b
=
2
2
,若l的斜率存在,且
F
1
A
+
F
1
B
?
AB
=
0
,求l的斜率.

【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:64引用:1難度:0.5
相似題
  • 1.已知雙曲線C:
    x
    2
    2
    -
    y
    2
    b
    2
    =1(b>0)一個焦點F到漸近線的距離為
    2

    (1)求雙曲線C的方程;
    (2)過點(2,0)的直線l與雙曲線C的右支交于A,B兩點,在x軸上是否存在點N,使得
    NA
    ?
    NB
    為定值?如果存在,求出點N的坐標(biāo)及該定值;如果不存在,請說明理由.

    發(fā)布:2024/8/15 2:0:1組卷:124引用:4難度:0.5
  • 2.已知雙曲線
    x
    2
    a
    2
    -
    y
    2
    b
    2
    =
    1
    過點
    3
    ,
    5
    2
    和點
    4
    ,
    15

    (1)求雙曲線的離心率;
    (2)過M(0,1)的直線與雙曲線交于P,Q兩點,過雙曲線的右焦點F且與PQ平行的直線交雙曲線于A,B兩點,試問
    |
    MP
    |
    ?
    |
    MQ
    |
    |
    AB
    |
    是否為定值?若是定值,求該定值;若不是定值,請說明理由.

    發(fā)布:2024/9/24 8:0:9組卷:296引用:10難度:0.3
  • 3.已知雙曲線
    C
    x
    2
    a
    2
    -
    y
    2
    b
    2
    =
    1
    a
    0
    ,
    b
    0
    的左、右焦點分別為F1,F(xiàn)2,斜率為-3的直線l與雙曲線C交于A,B兩點,點
    M
    4
    ,-
    2
    2
    在雙曲線C上,且|MF1|?|MF2|=24.
    (1)求△MF1F2的面積;
    (2)若
    OB
    +
    OB
    =
    0
    (O為坐標(biāo)原點),點N(3,1),記直線NA,NB'的斜率分別為k1,k2,問:k1?k2是否為定值?若是,求出該定值;若不是,請說明理由.

    發(fā)布:2024/9/15 3:0:8組卷:360引用:4難度:0.4
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正