已知a>2,函數(shù)f(x)=x-a-(a-1)lnxa,x>0.
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)設(shè)f(x)較小的零點(diǎn)為x1,證明:a-2<x1<a-2+1a.
f
(
x
)
=
x
-
a
-
(
a
-
1
)
ln
x
a
a
-
2
<
x
1
<
a
-
2
+
1
a
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:140引用:3難度:0.5
相似題
-
1.已知函數(shù)
,則f(x)的單調(diào)遞減區(qū)間為( ?。?/h2>f(x)=xlnx+3發(fā)布:2025/1/7 12:30:6組卷:106引用:2難度:0.9 -
2.已知函數(shù)
.f(x)=lnxx-x
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)0<t<1,求f(x)在區(qū)間上的最小值.[t,1t]發(fā)布:2024/12/29 12:0:2組卷:88引用:2難度:0.5 -
3.已知函數(shù)
.f(x)=12x2-a2+1ax+lnx
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)增區(qū)間.
(2)討論函數(shù)f(x)的單調(diào)性.發(fā)布:2024/12/29 9:30:1組卷:110引用:4難度:0.5
相關(guān)試卷