已知一個(gè)四位自然數(shù)N,它的各個(gè)數(shù)位上的數(shù)字均不為0,且滿足千位數(shù)字與個(gè)位數(shù)字的差等于百位數(shù)字與十位數(shù)字的差,則稱這個(gè)數(shù)為“孤勇數(shù)”,將這個(gè)四位自然數(shù)N的千位數(shù)字和個(gè)位數(shù)字互換,百位數(shù)字和十位數(shù)字互換,得到N′,規(guī)定F(N)=N-N′99.
例如:N=5324,∵5-4=3-2,∴5324是“孤勇數(shù)”,F(xiàn)(5324)=5324-423599=11.
(1)請判斷4631、4523是不是“孤勇數(shù)”,請說明理由,若是,請求出對應(yīng)的F(N)的值;
(2)已知A、B均為“孤勇數(shù)”.其中A=1000a+100b+362,B=100m+n+3015,其中2≤a≤8,0≤b≤6,1≤m≤9,5≤n≤14,且均為整數(shù)).令k=F(A)F(B).當(dāng)2F(A)+F(B)被7除余3時(shí),求所有符合條件的k的值.
N
-
N
′
99
5324
-
4235
99
F
(
A
)
F
(
B
)
【考點(diǎn)】因式分解的應(yīng)用.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:289引用:1難度:0.3
相似題
-
1.閱讀下列題目的解題過程:
已知a、b、c為△ABC的三邊長,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問:(1)上述解題過程,從哪一步開始出現(xiàn)錯(cuò)誤?請寫出該步的代號:;
(2)錯(cuò)誤的原因?yàn)椋?!--BA-->;
(3)本題正確的結(jié)論為:.發(fā)布:2024/12/23 18:0:1組卷:2501引用:25難度:0.6 -
2.閱讀理解:
能被7(或11或13)整除的特征:如果一個(gè)自然數(shù)末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是7(或11或13)的倍數(shù),則這個(gè)數(shù)就能被7(或11或13)整除.
如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
(1)用材料中的方法驗(yàn)證67822615是7的倍數(shù)(寫明驗(yàn)證過程);
(2)若對任意一個(gè)七位數(shù),末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是11的倍數(shù),證明這個(gè)七位數(shù)一定能被11整除.發(fā)布:2025/1/5 8:0:1組卷:121引用:3難度:0.4 -
3.若a是整數(shù),則a2+a一定能被下列哪個(gè)數(shù)整除( ?。?/h2>
發(fā)布:2024/12/24 6:30:3組卷:385引用:7難度:0.6
把好題分享給你的好友吧~~