如圖1,二次函數(shù)y=ax2+bx-3的圖象F交x軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),交y軸于點(diǎn)C,且OB=OC=3OA,直線l:y=kx-k-3交圖象F于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N左側(cè)).
(1)求二次函數(shù)的解析式;
(2)已知點(diǎn)D(1,-2),當(dāng)MA∥ND,且MA=ND時(shí),求k的值;
(3)如圖2,設(shè)圖象F的頂點(diǎn)為P,線段MN的中點(diǎn)為S,連接SP,求證:不論k取何值,SPMN的值不變.

SP
MN
【考點(diǎn)】二次函數(shù)綜合題.
【答案】(1)二次函數(shù)的解析式為y=x2-2x-3;
(2)k=-2;
(3)證明見解答過程.
(2)k=-2;
(3)證明見解答過程.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/2 8:0:9組卷:191引用:2難度:0.1
相似題
-
1.已知二次函數(shù)y=
x2+bx+c的圖象經(jīng)過點(diǎn)A(-3,6),并與x軸交于點(diǎn)B(-1,0)和點(diǎn)C,與y軸交于點(diǎn)E,頂點(diǎn)為P,對(duì)稱軸與x軸交于點(diǎn)D12
(Ⅰ)求這個(gè)二次函數(shù)的解析式;
(Ⅱ)連接CP,△DCP是什么特殊形狀的三角形?并加以說明;
(Ⅲ)點(diǎn)Q是第一象限的拋物線上一點(diǎn),且滿足∠QEO=∠BEO,求出點(diǎn)Q的坐標(biāo).發(fā)布:2025/6/23 8:30:2組卷:154引用:3難度:0.3 -
2.在平面直角坐標(biāo)系中,拋物線y=-x2+2mx-m2-m+1交y軸于點(diǎn)A,頂點(diǎn)為D,對(duì)稱軸與x軸交于點(diǎn)H.
(1)若拋物線經(jīng)過點(diǎn)(1,-2),
①求出m的值;
②寫出當(dāng)拋物線不經(jīng)過第一象限時(shí),如何平移該拋物線可與拋物線y=-x2+2x重合;
(2)當(dāng)拋物線頂點(diǎn)D在第二象限時(shí),如果∠ADH=∠AHO,求拋物線解析式.發(fā)布:2025/6/23 6:30:1組卷:82引用:1難度:0.3 -
3.如圖,拋物線y=
(x-3)2-1與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D.12
(1)求點(diǎn)A,B,D的坐標(biāo);
(2)連接CD,過原點(diǎn)O作OE⊥CD,垂足為H,OE與拋物線的對(duì)稱軸交于點(diǎn)E,連接AE,AD,求證:∠AEO=∠ADC;
(3)以(2)中的點(diǎn)E為圓心,1為半徑畫圓,在對(duì)稱軸右側(cè)的拋物線上有一動(dòng)點(diǎn)P,過點(diǎn)P作⊙E的切線,切點(diǎn)為Q,當(dāng)PQ的長最小時(shí),求點(diǎn)P的坐標(biāo),并直接寫出點(diǎn)Q的坐標(biāo).發(fā)布:2025/6/23 9:0:1組卷:2875引用:59難度:0.1
相關(guān)試卷