已知l1,l2既是雙曲線C1:x2-y24=1的兩條漸近線,也是雙曲線C2:x2a2-y2b2=1的漸近線,且雙曲線C2的焦距是雙曲線C1的焦距的3倍.
(1)任作一條平行于l1的直線l依次與直線l2以及雙曲線C1,C2交于點L,M,N,求MNNL的值;
(2)如圖,P為雙曲線C2上任意一點,過點P分別作l1,l2的平行線交C1于A,B兩點,證明:△PAB的面積為定值,并求出該定值.
x
2
-
y
2
4
=
1
x
2
a
2
-
y
2
b
2
=
1
3
MN
NL
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/21 8:0:10組卷:57引用:2難度:0.2
相似題
-
1.已知雙曲線C:
=1(a>0,b>0)的左頂點為A,過左焦點F的直線與C交于P,Q兩點.當(dāng)PQ⊥x軸時,|PA|=x2a2-y2b2,△PAQ的面積為3.10
(1)求C的方程;
(2)證明:以PQ為直徑的圓經(jīng)過定點.發(fā)布:2024/12/18 0:0:1組卷:691引用:8難度:0.5 -
2.如圖,在平面直角坐標(biāo)系xOy中,已知等軸雙曲線E:
(a>0,b>0)的左頂點A,過右焦點F且垂直于x軸的直線與E交于B,C兩點,若△ABC的面積為x2a2-y2b2=1.2+1
(1)求雙曲線E的方程;
(2)若直線l:y=kx-1與雙曲線E的左,右兩支分別交于M,N兩點,與雙曲線E的兩條漸近線分別交于P,Q兩點,求的取值范圍.|MN||PQ|發(fā)布:2024/10/31 12:30:1組卷:529引用:10難度:0.5 -
3.已知雙曲線
的左、右焦點分別為F1,F(xiàn)2,過F1的直線與C的兩條漸近線分別交于A,B兩點,若A為線段BF1的中點,且BF1⊥BF2,則C的離心率為( )C:x2a2-y2b2=1(a>0,b>0)發(fā)布:2024/11/8 21:0:2組卷:437引用:8難度:0.5
相關(guān)試卷