如圖,直線l交x軸、y軸的正半軸分別于E、D點(diǎn),OE=4,∠OED=45°,有拋物線y=ax2+(1-2a)x-2(a>0).
(1)直接寫出直線l的解析式;
(2)求證:當(dāng)a(a>0)變化時(shí),拋物線與x軸恒有兩個(gè)交點(diǎn);
(3)當(dāng)a(a>0)變化時(shí),拋物線是否恒經(jīng)過(guò)定點(diǎn)?若經(jīng)過(guò),求出所有定點(diǎn)坐標(biāo),若不經(jīng)過(guò),說(shuō)明理由;
(4)根據(jù)第(2)、(3)問(wèn)的結(jié)論在圖中畫(huà)出拋物線的大致圖象,設(shè)直線l與拋物線交于M、N兩點(diǎn),探究:在直線l上是否存在點(diǎn)P.使得無(wú)論a(a>0)怎么變化,PM?PN恒為定值?若存在,求出所有滿足條件的點(diǎn)P的坐標(biāo),并說(shuō)明點(diǎn)P是否在線段MN上;若不存在,請(qǐng)說(shuō)明理由.(參考公式:平面直角坐標(biāo)系中,任意兩點(diǎn)A(x1,y1),B(x2,y2)之間的距離為:AB=(x2-x1)2+(y2-y1)2)
(
x
2
-
x
1
)
2
+
(
y
2
-
y
1
)
2
)
【考點(diǎn)】二次函數(shù)綜合題.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/2 7:0:2組卷:56引用:1難度:0.3
相似題
-
1.如圖,已知拋物線y=ax2+bx-2與x軸的兩個(gè)交點(diǎn)是A(4,0),B(1,0),與y軸的交點(diǎn)是C.
(1)求該拋物線的解析式;
(2)在直線AC上方的該拋物線上是否存在一點(diǎn)D,使得△DCA的面積最大?若存在,求出點(diǎn)D的坐標(biāo)及△DCA面積的最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)拋物線的頂點(diǎn)是F,對(duì)稱軸與AC的交點(diǎn)是N,P是在AC上方的該拋物線上一動(dòng)點(diǎn),過(guò)P作PM⊥x軸,交AC于M.若P點(diǎn)的橫坐標(biāo)是m.問(wèn):
①m取何值時(shí),過(guò)點(diǎn)P、M、N、F的平面圖形不是梯形?
②四邊形PMNF是否有可能是等腰梯形?若有可能,請(qǐng)求出此時(shí)m的值;若不可能,請(qǐng)說(shuō)明理由.發(fā)布:2025/1/2 8:0:1組卷:82引用:1難度:0.5 -
2.如圖,我們把一個(gè)半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點(diǎn)A、B、C、D分別是“果圓”與坐標(biāo)軸的交點(diǎn),拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個(gè)“果圓”被y軸截得的弦CD的長(zhǎng)為.
發(fā)布:2024/12/23 17:30:9組卷:3641引用:37難度:0.4 -
3.如圖,將矩形OABC置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)C在x軸上,點(diǎn)D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點(diǎn)B落在坐標(biāo)平面內(nèi),設(shè)點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E.若拋物線y=ax2-45ax+10(a≠0且a為常數(shù))的頂點(diǎn)落在△ADE的內(nèi)部,則a的取值范圍是( ?。?/h2>5發(fā)布:2024/12/26 1:30:3組卷:2665引用:7難度:0.7