試卷征集
加入會(huì)員
操作視頻

“構(gòu)造圖形解題”,它的應(yīng)用十分廣泛,特別是有些技巧性很強(qiáng)的題目,如果不能發(fā)現(xiàn)題目中所隱含的幾何意義,而用通常的代數(shù)方法去思考,經(jīng)常讓我們手足無(wú)措,難以下手,這時(shí),如果能轉(zhuǎn)換思維,發(fā)現(xiàn)題目中隱含的幾何條件,通過(guò)構(gòu)造適合的幾何圖形,將會(huì)得到事半功倍的效果,下面介紹兩則實(shí)例:
實(shí)例一:勾股定理是人類(lèi)最偉大的十個(gè)科學(xué)發(fā)現(xiàn)之一,在我國(guó)古書(shū)《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載,我國(guó)漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”(如實(shí)例圖一),后人稱(chēng)之為“趙爽弦圖”,流傳至今.他利用直角邊為a和b,斜邊為c的四個(gè)全等的直角三角形拼成如圖所示的圖形(如實(shí)例圖一),由S大正方形=4S直角三角形+S小正方形,得
c
2
=
4
×
1
2
ab
+
b
-
a
2
,化簡(jiǎn)得:a2+b2=c2
菁優(yōu)網(wǎng)
實(shí)例二:歐幾里得的《幾何原本)記載,關(guān)于x的方程x2+ax=b2的圖解法是:畫(huà)Rt△ABC,使∠ACB=90°,
BC
=
a
2
,AC=|b|,再在斜邊AB上截取
BD
=
BC
=
a
2
,則AD的長(zhǎng)就是該方程的一個(gè)正根(如實(shí)例圖二).
根據(jù)以上閱讀材料回答下面的問(wèn)題:
(1)如圖1,請(qǐng)利用圖形中面積的等量關(guān)系,寫(xiě)出甲圖要證明的數(shù)學(xué)公式是
完全平方公式
完全平方公式
,乙圖要證明的數(shù)學(xué)公式是
平方差公式
平方差公式
;
(2)如圖2,利用歐幾里得的方法求方程x2+4x-4=0的一個(gè)正根.
(3)如圖3,已知⊙O,AB為直徑,點(diǎn)C為圓上一點(diǎn),過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D,連接CD,設(shè)DA=a,BD=b,請(qǐng)利用圖3證明:
a
+
b
2
ab

【考點(diǎn)】圓的綜合題
【答案】完全平方公式;平方差公式
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:277引用:1難度:0.5
相似題
  • 菁優(yōu)網(wǎng)1.如圖,矩形ABCD中,AB=13,AD=6.點(diǎn)E是CD上的動(dòng)點(diǎn),以AE為直徑的⊙O與AB交于點(diǎn)F,過(guò)點(diǎn)F作FG⊥BE于點(diǎn)G.
    (1)當(dāng)E是CD的中點(diǎn)時(shí):tan∠EAB的值為
    ;
    (2)在(1)的條件下,證明:FG是⊙O的切線;
    (3)試探究:BE能否與⊙O相切?若能,求出此時(shí)BE的長(zhǎng);若不能,請(qǐng)說(shuō)明理由.

    發(fā)布:2024/12/23 12:0:2組卷:648引用:5難度:0.4
  • 菁優(yōu)網(wǎng)2.如圖,AB是⊙O的直徑,AC是弦,直線EF經(jīng)過(guò)點(diǎn)C,AD⊥EF于點(diǎn)D,∠DAC=∠BAC.
    (1)求證:EF是⊙O的切線;
    (2)求證:AC2=AD?AB;
    (3)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.

    發(fā)布:2024/12/23 9:0:2組卷:1802引用:34難度:0.7
  • 3.在平面直角坐標(biāo)系xOy中,⊙O的半徑為1,P是坐標(biāo)系內(nèi)任意一點(diǎn),點(diǎn)P到⊙O的距離SP的定義如下:若點(diǎn)P與圓心O重合,則SP為⊙O的半徑長(zhǎng);若點(diǎn)P與圓心O不重合,作射線OP交⊙O于點(diǎn)A,則SP為線段AP的長(zhǎng)度.
    圖1為點(diǎn)P在⊙O外的情形示意圖.
    菁優(yōu)網(wǎng)
    (1)若點(diǎn)B(1,0),C(1,1),
    D
    0
    1
    3
    ,則SB=
     
    ;SC=
     
    ;SD=
     

    (2)若直線y=x+b上存在點(diǎn)M,使得SM=2,求b的取值范圍;
    (3)已知點(diǎn)P,Q在x軸上,R為線段PQ上任意一點(diǎn).若線段PQ上存在一點(diǎn)T,滿足T在⊙O內(nèi)且ST≥SR,直接寫(xiě)出滿足條件的線段PQ長(zhǎng)度的最大值.

    發(fā)布:2024/12/23 11:0:1組卷:618引用:11難度:0.1
小程序二維碼
把好題分享給你的好友吧~~
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱(chēng):菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正