如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.
(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.
(2)性質(zhì)探究:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關(guān)系.
猜想結(jié)論:(要求用文字語言敘述) 垂美四邊形兩組對邊的平方和相等垂美四邊形兩組對邊的平方和相等
寫出證明過程(先畫出圖形,寫出已知、求證).
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.

【考點(diǎn)】四邊形綜合題.
【答案】垂美四邊形兩組對邊的平方和相等
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:2687引用:21難度:0.1
相似題
-
1.如圖直角坐標(biāo)系中直線AB與x軸正半軸、y軸正半軸交于A,B兩點(diǎn),已知B(0,4),∠BAO=30°,P,Q分別是線段OB,AB上的兩個(gè)動(dòng)點(diǎn),P從O出發(fā)以每秒3個(gè)單位長度的速度向終點(diǎn)B運(yùn)動(dòng),Q從B出發(fā)以每秒8個(gè)單位長度的速度向終點(diǎn)A運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)結(jié)束,設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)求線段AB的長,及點(diǎn)A的坐標(biāo);
(2)t為何值時(shí),△BPQ的面積為2;3
(3)若C為OA的中點(diǎn),連接QC,QP,以QC,QP為鄰邊作平行四邊形PQCD,
①t為何值時(shí),點(diǎn)D恰好落在坐標(biāo)軸上;
②是否存在時(shí)間t使x軸恰好將平行四邊形PQCD的面積分成1:3的兩部分,若存在,直接寫出t的值.發(fā)布:2025/6/20 23:0:1組卷:1027引用:6難度:0.3 -
2.如圖,△ABC中,∠CAB與∠CBA均為銳角,分別以CA、CB為邊向△ABC外側(cè)作正方形CADE和正方形CBFG,再作DD1⊥直線AB于D1,F(xiàn)F1⊥直線AB于F1.
(1)如圖(1),過點(diǎn)C作CH⊥AB于H,求證:DD1+FF1=AB;
(2)如圖(2),連接EG,問△ABC的面積與△ECG的面積是否相等?請說明理由;
(3)如圖(3),過點(diǎn)C作CM⊥EG于M,延長MC交AB于點(diǎn)N,求證:AN=BN.發(fā)布:2025/6/21 3:30:1組卷:127引用:3難度:0.5 -
3.如圖,在梯形ABCD中,AD∥BC,∠B=90°,AB=10cm,AD=20cm,BC=24cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AD方向向點(diǎn)D以1cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開始沿CB方向向點(diǎn)B以3cm/s的速度運(yùn)動(dòng).P、Q兩點(diǎn)同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t,當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng).
(1)當(dāng)t=3時(shí),PD=,CQ=.
(2)當(dāng)t為何值時(shí),四邊形CDPQ是平行四邊形?請說明理由.
(3)在運(yùn)動(dòng)過程中,設(shè)四邊形CDPQ的面積為S,寫出S與t的函數(shù)關(guān)系式,并求當(dāng)t為何值時(shí),S的值最大,最大值是多少?發(fā)布:2025/6/21 2:0:1組卷:147引用:2難度:0.3