試卷征集
加入會員
操作視頻

觀察下列等式:
12×231=132×21,
13×341=143×31,
23×352=253×32,
34×473=374×43,
62×286=682×26,

以上每個等式中兩邊數(shù)字是分別對稱的,且每個等式中組成兩位數(shù)與三位數(shù)的數(shù)字之間具有相同規(guī)律,我們稱這類等式為“數(shù)字對稱等式”.
(1)根據(jù)上述各式反映的規(guī)律填空,使式子稱為“數(shù)字對稱等式”:
①52×
275
275
=
572
572
×25;
63
63
×396=693×
36
36

(2)設這類等式左邊兩位數(shù)的十位數(shù)字為a,個位數(shù)字為b,且2≤a+b≤9,寫出表示“數(shù)字對稱等式”一般規(guī)律的式子(含a、b),并證明.

【答案】275;572;63;36
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:1809引用:36難度:0.1
相似題
  • 1.如圖所示,對于任意正整數(shù),若n為奇數(shù)則乘3再加1,若n為偶數(shù)則除以2,在這樣一次變化下,我們得到一個新的自然數(shù).在1937年LotharCollatz提出了一個問題:如此反復這種變換,是否對于所有的正整數(shù),最終都能變換到1呢?這就是數(shù)學中著名的“考拉茲猜想”.如果某個正整數(shù)通過上述變換能變成1,我們就把第一次變成1時所經(jīng)過的變換次數(shù)稱為它的路徑長,例如5經(jīng)過5次變成1,則路徑長m=5.若輸入數(shù)n,路徑長為m,當m=7時,n的所有可能值有
    個,其中最小值為

    菁優(yōu)網(wǎng)

    發(fā)布:2024/11/7 8:0:2組卷:74引用:2難度:0.5
  • 2.找規(guī)律填數(shù)字:7,2,5,-3,8,-11,
     
     

    發(fā)布:2024/11/13 8:0:1組卷:54引用:0難度:0.9
  • 3.找規(guī)律填數(shù)字
    (1)1,3,7,15,
     
    ,63;
    (2)3,8,15,24,35,
     
    ,63.

    發(fā)布:2024/11/13 8:0:1組卷:52引用:1難度:0.7
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應用名稱:菁優(yōu)網(wǎng) | 應用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務條款廣播電視節(jié)目制作經(jīng)營許可證出版物經(jīng)營許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正