如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,∠BCD=π3,AB=1,PB=2,PD⊥CD,PB⊥BD,N為棱PC的中點(diǎn).條件①:BC=2;條件②:平面PBD⊥平面ABCD.
從條件①和條件②這兩個(gè)條件中選擇一個(gè)作為已知,完成下列問題:
(Ⅰ)求證:AB⊥PB;
(Ⅱ)若點(diǎn)M在線段AN上,且點(diǎn)M到平面BDN的距離為55,求線段CM的長.
注:如果選擇條件①和條件②分別解答,按第一個(gè)解答計(jì)分.
∠
BCD
=
π
3
5
5
【考點(diǎn)】點(diǎn)、線、面間的距離計(jì)算;平面與平面垂直.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/7 0:0:1組卷:60引用:3難度:0.4
相似題
-
1.在多面體ABCDEF中,底面ABCD是梯形,四邊形ADEF是正方形,AB∥DC,CD⊥AD,面ABCD⊥面ADEF,AB=AD=1.CD=2.
(1)求證:平面EBC⊥平面EBD;
(2)設(shè)M為線段EC上一點(diǎn),,試問在線段BC上是否存在一點(diǎn)T,使得MT∥平面BDE,若存在,試指出點(diǎn)T的位置;若不存在,說明理由?3EM=EC
(3)在(2)的條件下,求點(diǎn)A到平面MBC的距離.發(fā)布:2025/1/2 8:0:1組卷:109引用:1難度:0.3 -
2.如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE=CD=2,M是線段AE上的動點(diǎn).
(1)試確定點(diǎn)M的位置,使AC∥平面DMF,并說明理由;
(2)在(1)的條件下,求點(diǎn)A到平面DMF的距離.發(fā)布:2025/1/2 8:0:1組卷:11引用:1難度:0.5 -
3.在多面體ABCDEF中,底面ABCD是梯形,四邊形ADEF是正方形,AB∥DC,CD⊥AD,面ABCD⊥面ADEF,AB=AD=1.CD=2.
(1)求證:平面EBC⊥平面EBD;
(2)設(shè)M為線段EC上一點(diǎn),,求點(diǎn)A到平面MBD的距離.2EM=EC發(fā)布:2025/1/2 8:0:1組卷:6引用:1難度:0.5
把好題分享給你的好友吧~~