已知函數(shù).f(x)=2alnx-x2+a,a∈R.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)有兩個(gè)零點(diǎn)x1,x2,且x1<x2,曲線y=f(x)在這兩個(gè)零點(diǎn)處的切線交于點(diǎn)(x0,y0),求證:x0小于x1和x2的等差中項(xiàng);
(3)證明:2ln(n+1)>12+13+14+?+1n+1,n∈N*.
2
ln
(
n
+
1
)
>
1
2
+
1
3
+
1
4
+
?
+
1
n
+
1
,
n
∈
N
*
【答案】(1)若a≤0,f(x)在(0,+∞)上單調(diào)遞減;
若a>0,當(dāng)x∈(0,]時(shí),f(x)單調(diào)遞增,當(dāng)x∈(,+∞)時(shí),f(x)單調(diào)遞減;
(2)證明見(jiàn)解答;
(3)證明見(jiàn)解答.
若a>0,當(dāng)x∈(0,
a
a
(2)證明見(jiàn)解答;
(3)證明見(jiàn)解答.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:76引用:4難度:0.2
相似題
-
1.已知函數(shù)f(x)=x3-2kx2+x-3在R上不單調(diào),則k的取值范圍是 ;
發(fā)布:2024/12/29 13:0:1組卷:236引用:3難度:0.8 -
2.在R上可導(dǎo)的函數(shù)f(x)的圖象如圖示,f′(x)為函數(shù)f(x)的導(dǎo)數(shù),則關(guān)于x的不等式x?f′(x)<0的解集為( )
發(fā)布:2024/12/29 13:0:1組卷:265引用:7難度:0.9 -
3.已知函數(shù)f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數(shù)f(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2(x1≠x2),證明:.x1?x2>e2發(fā)布:2024/12/29 13:30:1組卷:141引用:2難度:0.2
相關(guān)試卷