當(dāng)前位置:
2023-2024學(xué)年福建省城東中學(xué)、華僑中學(xué)、石獅八中、泉州外國(guó)語(yǔ)學(xué)校四校高一(上)期中數(shù)學(xué)試卷>
試題詳情
已知函數(shù)f(x)=(3a-1)x+4a,x<2 x+1,x≥2
的值域?yàn)镽,則a的取值范圍是( ?。?/h1>
( 3 a - 1 ) x + 4 a , x < 2 |
x + 1 , x ≥ 2 |
【考點(diǎn)】分段函數(shù)的應(yīng)用;函數(shù)的值域.
【答案】C
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/20 5:0:1組卷:151引用:2難度:0.7
相似題
-
1.德國(guó)著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)f(x)=
稱為狄利克雷函數(shù),關(guān)于函數(shù)f(x)有以下四個(gè)命題:1,x∈Q0,x∈?RQ
①f(f(x))=1;
②函數(shù)f(x)是偶函數(shù);
③任意一個(gè)非零有理數(shù)T,f(x+T)=f(x)對(duì)任意x∈R恒成立;
④存在三個(gè)點(diǎn)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.
其中真命題的序號(hào)為.(寫(xiě)出所有正確命題的序號(hào))發(fā)布:2024/12/22 8:0:1組卷:22引用:2難度:0.5 -
2.德國(guó)著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)f(x)=
被稱為狄利克雷函數(shù),則關(guān)于函數(shù)f(x)有以下四個(gè)命題:1,x∈Q0,x∈?RQ
①f(f(x))=0;
②函數(shù)f(x)是偶函數(shù);
③任意一個(gè)非零有理數(shù)T,f(x+T)=f(x)對(duì)任意x∈R恒成立;
④存在三個(gè)點(diǎn)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.
其中真命題的個(gè)數(shù)是( ?。?/h2>發(fā)布:2024/12/22 8:0:1組卷:58引用:4難度:0.7 -
3.已知函數(shù)f(x)=
,若f(x1)=f(x2),且x1≠x2,則|x1-x2|的最大值為.-x-1,x≤0-x2+2x,x>0發(fā)布:2024/12/29 3:0:1組卷:120引用:4難度:0.4
把好題分享給你的好友吧~~