(1)【問題情境】
課外興趣小組活動(dòng)時(shí),老師提出了如下問題:
如圖①,△ABC中,若AB=13,AC=9,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長(zhǎng)AD至點(diǎn)E,使DE=AD,連接BE.請(qǐng)根據(jù)小明的方法思考:
Ⅰ.由已知和作圖能得到△ADC≌△EDB,依據(jù)是BB.
A.SSS B.SAS C.AAS D.HL
Ⅱ.由“三角形的三邊關(guān)系”可求得AD的取值范圍是2<AD<112<AD<11.
解后反思:題目中出現(xiàn)“中點(diǎn)”、“中線”等條件,可考慮延長(zhǎng)中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集中到同一個(gè)三角形之中.
(2)【初步運(yùn)用】
如圖②,AD是△ABC的中線,BE交AC于E,交AD于F,且∠FAE=∠AFE.若AE=4,EC=3,求線段BF的長(zhǎng).
【考點(diǎn)】三角形綜合題.
【答案】B;2<AD<11
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/20 7:0:8組卷:313引用:3難度:0.2
相似題
-
1.探索:如圖①,以△ABC的邊AB、AC為直角邊,A為直角頂點(diǎn),向外作等腰直角△ABD和等腰直角△ACE,連接BE、CD,試確定BE與CD有怎樣數(shù)量關(guān)系,并說明理由.
應(yīng)用:如圖②,要測(cè)量池塘兩岸B、E兩地之間的距離,已知測(cè)得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的長(zhǎng).發(fā)布:2025/6/20 10:0:1組卷:1305引用:4難度:0.1 -
2.如圖,在△ABC中,∠ACB=90°,AC=3,BC=6.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AB以每秒
個(gè)單位長(zhǎng)度的速度向終點(diǎn)B勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),沿折線BC-CA以每秒3個(gè)單位長(zhǎng)度的速度向終點(diǎn)A勻速運(yùn)動(dòng).當(dāng)點(diǎn)P不與點(diǎn)A、B重合時(shí),連結(jié)PQ,以PQ為斜邊作Rt△PMQ,使∠PMQ=90°,tan∠MPQ=5,且點(diǎn)M、B在直線PQ的兩側(cè).設(shè)點(diǎn)Q的運(yùn)動(dòng)時(shí)間為t秒.43
(1)用含t的代數(shù)式表示CQ的長(zhǎng).
(2)當(dāng)PM⊥AB時(shí),求PQ的長(zhǎng).
(3)當(dāng)點(diǎn)M在△ABC內(nèi)部時(shí),求t的取值范圍.
(4)當(dāng)△ABC的邊與△PMO的邊所夾的角被線段PQ平分時(shí),直接寫出t的值.發(fā)布:2025/6/20 10:30:1組卷:82引用:1難度:0.1 -
3.如圖1,在△ABC中,BO⊥AC于點(diǎn)O,AO=BO=3,OC=1,過點(diǎn)A作AH⊥BC于點(diǎn)H,交BO于點(diǎn)P.
(1)求線段OP的長(zhǎng)度;
(2)連接OH,求證:∠OHP=45°;
(3)如圖2,若點(diǎn)D為AB的中點(diǎn),點(diǎn)M為線段BO延長(zhǎng)線上一動(dòng)點(diǎn),連接MD,過點(diǎn)D作DN⊥DM交線段OA延長(zhǎng)線于N點(diǎn),則S△BDM-S△ADN的值是否發(fā)生改變,如改變,求出該值的變化范圍;若不改變,求該式子的值.發(fā)布:2025/6/20 14:30:1組卷:3194引用:5難度:0.3